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>We‘ are’concerned with the existence and comparison of cigenvalues for the

eigenvalue problem (—1)""!Lu = AP(t)u, Tu = 0, where Tu = 0 are appropriate

boundary conditions at points in the interval [a,b]. Here u(t) is an m-column

vector func.tiqn,v\P(t) is a continuous m X m matrix function on [a,b] and Lu =
i .

u® + p1()u(®=V 4 .o 4 pa(2). Wewﬁl/:xas;umc that the corresponding scalar

equation L“l‘j‘ =0 lS rxgh‘t disfocal on [a,b]. chet our gxistence and comparison

2
results'by using several abstract theorems from cone theory in a Banach space.

We first consider the boundary \val~uev problem u@'+ r(t)u' =0, uY(a) = 0,
Coovy -

i=0,1,...,k=1and uli )"'(b) = g, j= 1!,\2, ...,n—k. Using comparison theorems

for Green’s functions due to Peterson and Ridenhour we are able to apply cone

theory to get the exsitence and uniqueness of an eigenvector in a cone. Further, we

can give comparison results between the smallest positive eigenvalues of different

eigenvalue problems.

We also examine the n-point right focal eigenvalue problem (—1)"-!'Lu =
AP(t)u, uli-1(t;) = 0, for i = 1,2,...,n. Assuming that Ly = 0 is right disfocal

we give an explicit form for the Green's function. Under certain sign conditions




on the Green's function and conditions on P(t), we can show the existence of
a smallest positive eigenvalue. And with further conditions on P(t), that its
corresponding eigenyector is essentially unique with respect to a ‘cone’. We also
have comparison results for the eigenvalue problem above and the problem Lu =
AQ(t)u, uli=1)(¢t;) = 0fori = 1,2,...,n. We close this chapter by giving examples
where the Green’s function has the desired sign conditions. We also give results

for the difference equation analog on this problem.
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Introduction

We are concerned with the existence and comparison of eigenvalues for the
eigenvalue problem (—1)"~!Lu = AP(t)u, Tu = 0, where Tu = 0 are appropriate
boundary conditions at points in the interval [a,b]. Here u(t) is an m-column
vector function, P(t) is a continuous m X m matrix function on [a,b] and Lu =
u(™ 4+ pr()u®=D 4 ... 4+ pa(t). We will assume that the corresponding scalar
equation Ly = 0 is right disfocal on [a, b, that is, there does not exist a nontrivial
solution y of Ly = 0 and points a < t; < t; < --- < t, < b so that yU () =0
forz=1,2,...,n.

To get our existence and comparison results, we use several important theo-
rems from cone theory. Krasnosel’skii [12] discovered that if an operator M maps
a cone, P, back into itself, and there exists a nontrivial v in P and an ¢ > 0
so that Mu > cu, where ‘>’ means that if z > y then (z — y) € P, then there
exists an eigenvector in the cone. Moreover, if M is u.-positive, that is, for all
nontrivial z in P there exists scalars a, 8 > 0 so that au, < Mz < fu,, then
this eigenvector is essentially unique. We also use a result from Keener and Travis
[10]. Suppose operators M and N map our cone P back into itself, and one of
them is uo-positive. Further suppose that there exists nontrivial u, v in P and
scalars A, A so that A\u < Mu and Nv < Av. Then if Mz < Nz forallz € P

then A < A.




[AV]

In Chapter 2 we let k be a fixed element of {1,2,...,n —1}. We consider the
linear differential operator Lu = u{™ 4-r(¢)u, where r(t) is continuous on [a, b]. We
let 7;, for 1 < j < n ~ k be integers suchthat 0 <71 <19 <--* <tk S<n-—1.
Then our boundary conditions for this problem are given by u(?(a) = 0, i =
0,1,...,k—1and u(¥)(b) =0,j =1,2,...,n — k. Now Peterson and Riddenhour
[15] discovered sign conditions on the Green’s functibn for the scalar analog of this
problem. Further, they give comparisons between the Green’s function for this
operator with different boundary conditions. We take this eigenvalue problem and
consider its corresponding integral equation. By appropriately defining a Banach
space with a cone and using the sign conditions on the Green’s function, we find
that our integral operator in a u.-positive operator. This allows us to apply the
results of Krasnosel’skii to get the existence of and uniqueness of an eigenvector
in the cone. Further, by using the comparison between different Green’s functions
we can use Keener and Travis’ results to give comparisons between the smallest

eigenvalues of different eigenvalue problems.

In our third chapter we examin the n-point right focal eigenvalue prob-
lem (=1)*"'Lu = AP(t)u, u1(¢) = 0,1 = 1,2,...,n, where Lu = u(® 4+
pr(H)u(™=1 4 ... 4 p,(t). Assuming that Ly = 0 is right disfocal we give an ex-
plicit form for the Green’s function. Under certain sign conditions on the Green’s
function and conditions on P(t), we can show the existence of a smallest positive

cignevalue. And with further conditions on P(t), that its corresponding eigenvec-
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tor is essentially unique with repect to a ‘cone’. We also have comparison results
for the eigenvalue problem above and the problem Lu = AQ(t)u, u(*~1(¢;) = 0
for 1 = 1,2,...,n. We close this chapter by giving examples where the Green's
function has the desired sign conditions.

In our final chapter we show how the results from Chapter 3 can be obtained
for the n-th order linear vector difference equation Lu(t) = 3 1, ai(t)u(t—k+i) =
0,t € [a+k, b+ k]. We assume that the coefficients a,(t) are defined on [a+k, b+ k],
fori=1,2,...,n,an.(t) =1, and (~1)"a.(t) > 0 for all ¢t € [a+k, b+ k). Here, the
matrix function P(t) and Q(¢) are also defined on [a + k,b + k]. We assume that
Ly = 0 is right disfocal for this difference equation case and again are able to give
an explicit form for this Green's function. By assuming certain sign conditions
ou e Green’s [fuuction we cau shew that the results from Chapter 3 hold for
the difference eigenvalue problem. We also close this chapter by giving examples

where the Green'’s function has the desired sign conditions.




Chapter 1

Cone Theory

I) Fundamental Definitions

We will start our exploration of cone theory with a fundamental definition.
A good treatment of cone theory can be found in Deimling 2] or in Krasnosel'skii
[10). Many of our definitions and theorems are from Krasnosel’skil.

Definition: Let B be a Banach space. A nonempty subset P of B is called a cone
if the following conditions are satisfied:

a) The set P is closed; \

b) If u,v € P, then au + fv € P for all scalars a,8 > 0;

c) f u,—u € P tucn u = 0, the zero element of B.

We note that from b), it follows that P is a convex set. A cone P is calied solid
if it has a nonempty interior P°, that is, P° # 0. A cone P is called reproducing if
every element z € B can be written in the form z = u — v,u,v € P. The elements
u and v are not unique, for if £ = u — v, u,v € P and w is any other nonzero
element of P, then z = (u + w) — (v + w).

The following lemma gives us a relationship between a solid cone and a re-

producing cone.
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LEMMA 1.1. Let P be a solid cone in Banach space 5, then P is a reproducing

cone.

PROOF: Let z be an arbitrary element of B. Let v € P°, the iuterior of P. Since
P is solid, that is, P has nonempty interior, we know that we can find such a v.
Now, since v is an interior point of P, we have that (v + ex) € P for sufficiently
small € > 0. Let u = v+ ez and divide through by € to get that -le-u = %v +z. So
we have that z = u, — v,, where u, = %u, and v, = i-.v, SO Uo, Vo € P. Hence we

have that P is a reproducing cone.

As an example, we have:

Example 1.1: Let B = Cla,b], the set of continuous functions on the interval -
[a, 8], with norm [[z|] = sup(, 4 lz(¢)]. Let P = C%[a,b], the set of continuous
nonnegative functions on the interval [a,b]. It'is casy to show that P is a cone

in B and has a nonempty interior P°, equal to the set of continuous positive
functions on [a,b]. Then, from Lemma 1.1, we know that since P is solid, it is
also reproducing.

The converse of Lemma 1.1 is not true. Let B = L,[a.b], the space of the
functions which are pth power, absolutely integrable on the interval {a, b}, and P
be the set of nonnegative functions of B. Then P is a cone and although P is
reproducing, it has no interior points. It can be shown that in a finite dimensional
space, solid and reproducing are equivalent.

The space B is called partially ordered if, for certain clements z,y € B, the




relationship z < y is defined and the relation sign'<’ posseses the properties:
i) If z <y, then az < ay for all scalars a > 0, and azr > ay if a < 0;

i) If:zgyandyg;'t:thenz::y;

i) I z; <y and z2 < yp then (27 +22) < (y1 +¥2)s

iv) Ifz <yandy < zthenz < 2.

Our cone P induces a partial ordering on B if we write £ < y to mean that
(y — z) € P. To see this, we will show that this relation satisfies the properties
listed above. Property i) follows from property b) of a cone, for if z < y, then
(y — z) € P from which we have that a(y —z) € Pforalla 2 0. So a(y — z) =
(ay — az) € P, or that az < ay foralla 2 0. If a <0, then (—a)(y —z) € P or
(az — ay) € P, so that ay < az for all a < 0.

To show ii), we note that if z <y and y < z then (y — z),(z —y) € P. But
(y — z) = —(z — y) so we have that —(z — y),(z — y) € P which implies from
property c) of a cone, that (z —y)=0orz =y.

The last two properties follow from the fact that the cone is closed under
addition. If z; < y; and z; < y2 then (y1 — z1),(y2 — z2) € P. So then (y; —
zy)+(y2 — z2) € P. But (y; — 1) + (y2 — z2) = (1 + y2) — (21 + z2) so we have
that (z; + z2) < (y1 + y2). Finally,ifzr <yandy <z then {y—z),(z —y) € P.
So(y—z)+(z—y)=(z—1z)€ P, and z < = follows.

One further property of the ‘<’ relation is invoked by the fact that the cone

is closed. Suppose that {z,} and {y,} are sequences in B and that z, — z and




Yyn — y as n — oo. Suppose further that z,, < y, forn =1,2,...,thenz < y. The
proof is simple. If z,, < yn forn =1,2,..., then (yn —zn) E Pforn =1,2,....
Now (yn — za) = (¥ - T) as n — oo so we have that (y — z) is the limit point
of the sequence {y, — z,}. Thus, since {yn — z,} C P and P is ~losed (hence it
contains all of its limit points), we have that (y —z) € Porz < y.

II) Preliminary Lemmas

Consider the cone in R?, P = {(r,6)|r 2 0, 5'9 < I}, where the point
(r,6) is given in polar coordinates. We notice that no line lies completely in the
cone. A line segment may lie in P or at best a ray will lie in the cone. This
geometric property also holds true for abstract cones, as the following lemmas

from Krasnosel’skii demonstrate.

LEMMA 1.2, Let uo € P and z € B. Suppose there exists an a, so that z < aolo.

Then z < au, for all a 2> a,.

PROOF: Let a be greater than or equal to a,. Let 8 = (@ — a.) > 0. Then since
(aou—z),Bu, € P, wehavethat (au,—z) = (ao+3)ue—7 = (@ouo—z)+Lfus € P.

So we have that z < au,.

LEMMA 1.3. Let uo € P\{0} and z € B. Suppose there exists an a, so that

z < aoue. Then there exists a smallest a; for which z < o)u,.

PRrooF: First, suppose there does not exist a lower bound on the set of all a's

for which z < au.. Then we can find a negative sequence {f,} of this set, where




8
Bn — —oc0 ann — oo. Then for n = 1,2,..., we have that z < Bnu.. Now
|Bn| > O for all n so we have that TA;TI:C < T‘%-[uo = —u,. Letting n — oo we find
that 0 £ —u,, which fells us that —u, € P which contradicts uo € P\{0}. Thus
there exists a lower bound for this set. Let a;be the greatest lower bound of this
set. Then aju, — z is a limit point of our cone, and since our cone is closed we

have the desired result.

LEMMA 1.4. Let r,uo € B and ~u, ¢ P. Suppose there exists an a, so that

aouo < z. Then there exists a maximum «; so that aju, < z.

PROOF: Suppose there does not exists an upper bound on the set of all a’s such
that aus < z. Then we can find a positive sequence {f,} of this set, where
Bn — 00 as n — oo. This gives us that for n = 1,2,..., us < :}:x. Letting
n — oo yields that u, £ 0 or —u, € P which is a contradiction. Thus there exists
an upper bound of this set. Let a; be the least upper bound of this seL Then we

have that r — aju. is a limit point of our cone, and since our cone is closed we

have that aju, < z.

IIT) Linear Positive Operators

In this section we study linear operators which leave a cone invariant in
a Banach space. Under some general assumptions, these operators will have a
characteristic vector in the cone. Before getting on to these theorems, we will
need some additional definitions.

Let P be a cone in a Banach space B. The operator M : B — B is called
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positive if M maps the cone back intoitself, that is, M : P — P. If u, is a nonzero
element of P, then we call the linear operator M u,-bounded below if for every
nonzero x € P there .is a natural number n and an o > 0 (which may depend
on z) such that au, < M"z. {where M™z means the operator M operating on
the element z, n-times.} An operator M is called u,-bounded above if for every
nonzero r € P there is a natural number n and a § > 0 (which may depend on z)
such that M"z < Bu,. If for every nonzero z € P there exists a natural number
n and a, f > 0 such that au, £ M"z < Pu,, then we say that M is a u,-positive

operator.

A property of M being u.-bounded below is that if z € P\{0}, then M"z # 0
for any n. For suppose that there existed an z € P\{0} and an integer %k such
that A%z = 0. Let us suppose further that k is the smallest positive integer
for which this holds. Then M*~'z € P\{0} and since M is u,-bounded below,
there exists an n and an a > 0 so that au, < M™(M*~1z). But M (M*=1z) =
M"Y (AMfkz) = M"'(0) = 0. Hence au, < 0 or ~aus € P. Since a > 0 this

tells us that —u, € P which is a contradiction and our claim is proved.

In the above definitions, we have found a natural number n, and then operated
on z with M, n times. In our study of differential equations, we will always take
this natural number n to be identically equal to 1. So, for example, we would
say that M is u,-positive if for every nonzero z € P there exists o, > 0 such

that aue £ Mz < Buo.. We will, however, continue to keep these more general
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definitions a while longer.
If our cone P is solid and if for ever nonzero z € P we can find an n such that
Mm™z is in the interior. of P, then we say that M is strongly positive. A strongly
positive operator is the simpliest example of a uo-positive operator. This is seen

in the following Lemma.

LEMMA 1.5. Let M be a strongly positive linear operator, rclative to the solid

cone P. Then for any u, in the interior of P, M is uo-positive.

PROOF: Let u, € P° and z an arbitrary, nonzero clement of P. Then, since M is
a strongly positive operator, there exists a natural number n such that M"z € P°.
Since M ™z is an interior point of P, we have that (M"z —au,) € P for sufficiently
small a > 0, that is au, < M™z. Similarly, since u, is an interior point of P, we
have that (uo — %M"z) € P, for sufficiently large 8 > 0. So ’EA/I" < u,, which
gives us that M"z < Bu,. So for an arbitrary nonzero z in P, we haﬁ.z found an

<Mz < fBu,.

a, > 0 and an n, so that au,

IV) Characteristic Vectors

Let B be a Banach space and M an operator on B. We call a nonzero element
z € B an eigenvector or characteristic vector if there exists a scalar A, such that
Mz = Mz. The scalar ) is called an eigenvalue or a characteristic value. We
sometimes call (A, z) an eigenpair for the operator M.

Suppose that M is a linear operator which leaves some cone P C B invariant,

that is, M is a positive operator with respect to P. If z is an eigenvecter of M
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and r is an element of P, then we say that z is a positive eigenvector, and its
associated eigenvalue is called a positive eigenvalue. We are interested in these

positive eigenvectors and will employ Schauder’s Theorem to prove their existence.

SCHAUDER'S FIXED POINT THEOREM. Let M be a completely continuous oper-
ator which maps a closed convex bounded set K, into itself. Then M has a fixed

point z, € K which satisfies the equation Mz = z.

Recall that an operator is called completely continuous if it is continuous and
maps bounded sets into sets whose closures are compact. We sometimes will refer
to a completely continuous operator as a compact operator.

The following Theorem from Krasnosel’skii [10], gives conditions for a linear,

completely continuous operator to possess a positive eigenvector.

THEOREM 1.6. Let B be a Banach space with cone P, and M a completely
continuous, positive linear operator. Suppose there exists an o > 0, a natural
numberp, andau € B, ~u ¢ P, u = v—w, v,w € P, such that MPu > au.
Then M has a eigenvector z, € P and its associated eigenvalue A,, satisfies the

inequality Ao > {/a.

PRroor: Let I be the intersection of the closed unit ball with the cone, so K =
Pn{z e B : |z]] £1}. We have that u = (v — w), v,w € P and —~u ¢ P. So we

know that v # 0. We then define the operators M, on K by

n=1,2,...

M(z + %)
Mz = —ETw)
(1) M(z + 2)]]
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Then, for each n, M,, is completely continuous since the operator M is completely
continuous. We also have that, for each n, M, : K — L. This is easily seen, for
if z is an arbitrary el;:ment of K, then (z + £) € P and since M is a positive
operator, M(z+ %) € P so that M,z € P. Also, by (1) it is clear that |[Af,z|| <1,
so we have that M,z € K. Since z was arbitrary we have that M, : iy — K.
Now K is a closed bounded convex set. {We know that K is convex since
both P and the unit ball are convex and the intersection of two convex sets is a
convex set.} By applying Schauder’s Theorem we have that every operator M,

has a fixed point z, in K. So we have that Mpz, = z, or from (1) we have that
2) M(za + %) = AnZny An =M (20 + %)n, n=1,2,...

Now Af is a compact operator and the set {z, + £ |n =1,2,...} is bounded
by 1+ |lv]], since ||zn + 2| < |lzall + U%I.l < 1+ ||v]l. Thus there exists a
subsequence of the sequence {M(z, + £)} which converges. That is, there exists
a sequence of n;'s, so that the sequence from (2), {An,;zn,} converges. Now, since
the sequence {M(zn; + =)} converges, this gives us that A, = [|M(z., + s
converges to, say, Ao = 0.

We will now show that A, > 0 and, in fact that A, > ¢/a. From (2) we have
that M(z, + £) = Anzn. Thus Apzn 2 Maz,, since M is linear and (A z, —

Mz,) = LMv € P. This gives us that z, > '\—‘"-Ith:n. Now since M is a positive

linear operator we have that z, > x‘:M:z,, > f:]\‘{['\’—"Mx,,]= f',‘—]\/f?:c,,. So

after p — 1 iterations we get that z, > ;\-,l_—,M”":z:,,, so from (2) we have z,, >
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M (20 + 2).

Now MP(zn+ £) 2 MP(L) = LMPy, since (zn + 5) 2 %. Also we have that

r
n
MPy > MPu since v > u = v — w, and MPu > au by hypothesis. This gives us

that

1
znz;ﬁ

1
>
= n\k

v
P -—
M (:r:,.+n)

MPy

a
_>_-n—M,‘-u, forn=1,2,....

By Lemma 1.4 there exits a sequence of maximum fS,’s so that
(3) Zn > Bnu, n=12,....
This and the fact that v > u yields

1 v
(4) Tn 2 /\—ﬁM‘”(zn + ;)

1 u
> AP hod
1 1

= — (B, + =)MP

a 1
Zﬁ(ﬂn'*';)ua n=12,...
Now, by the maximality of each 8,, we combine (3) and (4) to get that

o 1
Pn 2 E(ﬂn + ;)
o

or M >a ,
"2t LB,

n=12,....
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Now' An; — A, as ¢ — 0o, hence from the last inequality we get that A} > a > 0
or our desired inequality, Ao > ¢/a.
Since we have th;'«zt the sequence {Ap;zn;} converges, and A, converges to
Ao > Y > 0, we have that the sequence {Aq,z,;} converges to Aoz, for some z,.
Hence, we have that {(An;Zn;)/Xo} converges to z, as i — oco. Now from (2) we
have that ||(An,Zn;)/Re]l = (32)||zn,]l = 32 — 1 as i — co. Thus ||z.|| = 1 and
so T, # 0.
Since each (zn; + 37) € P and P is closed, we have that =, € P. Also, since
M is continuous, we have that M(z, + ;) converges to Mz,. But M(zn, +55) =
An; Ty, which converges to Aozo. Thus Mz, = AoZo. That is, zo is an eigenvector

of the operator M with eigenvalue )., and further, z, € P. Hence our theorem is

proved.

An eigenvalue, Ao, of an operator M is sometimes called simple if all the

solutions of the equation

(M -XI)"z =0, n=12...
are also solutions of (M — A,J)z = 0, where this set of solutions is one dimen-
sional. Krasnosel'skil has an important result which gives conditions under which

our positive eigenvalue is simple and its corresponding eigenvector 1s essentially

unique. To prove this theorem, we will first need the following lemma.

LEMMA 1.7. Let z, be a positive eigenvector of the u,-positive operator M. Then

M is an z.-positive operator.

\
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PROOF: Since zo € P and M is u.-positive, there exists as a,,8, > 0 and a

natural number p so that

aotto < MPz4 < fotio.

Now if ), is the corresponding eigenvalue of z,, then since M is u,-positive,

we know that A, > 0. Further we have that MPz, = Az,, and so

AP A
(5) —zo<u, and u, < —=z,.
° Qo

So if r is an arbitary element of P\ {0}, then there exists an a, § > 0 and a natural

number n so that

au, < M"z < Bu,.
But by the inequalities (5) we have
a1Zo < M"z < Bz,
where a; = aA\b/B. and ) = B)}/a.. Thus M is z.-positive.
With this lemma proved, we move onto our important theorem.

THEOREM 1.8. Let P be a reproducing cone in our Banach Space B, and M a
completely continuous, u.-positive linear operator on B. Then the operator M
has an essentially unique, (unique to within the norm), eigenvector in P, and its

associated eigenvalue is simple.

PROOF: Sincc M is uo-positive, and u, € P, there exists a,f > 0 such that

auo, < MPu, < fu,, for some natural number p. Now P is a reproducing cone,
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$0 o = (v —w), v,w € P and ~u, ¢ P. Thus, by Theorem 1.6, M has an
eigenvector z,, in P with associated eigenvalue Ao, and since M is u,-positive, we

know that Ao > 0.

We will first show that ), is simple, and then show that there is no other
eigenvalue with corresponding eigenvector in P. First suppose that there exists a
Yo, noncolinear to ., so that My, = Aoyo. We can assume that —y, ¢ P, for if it
were, we can take z, = —Yyo, 50 —zo, ¢ P and Mz, = AoZo. Since P is reproducing,
there exists y;,y2 € P so that yo = y; — y2 with y; # 0 since —y, ¢ P. We note
that yo < y since (y1 —yo) =y2 € P.

Now from Lemma 1.7 we have that M is z.-positive. Hence therc exists a
B > 0 and a p so that MPy; < fBz,. This gives us that Aly, = MPy, < My, <
Bz.. Thus we have that (z, — i‘,:-y‘,) € P. Then, by Lemma 1.4, there exists a

maximal B, so that (zo — Boyo) € P, which gives us that §o 2 % > 0.
We have that (zo — Boyo) € P, and M is z.-positive, thus there exists an
a > 0, and an n such that az, < M™(ze —foyo). Now Boyo < 2o, 50 afoye < az,.

But this give that afeyo < azoe < M" (2o ~ foyo), or that afoye < (M"ze -

ﬁoM"yo) = Az, — BoAly.. Thus ‘:\‘;' Yo < Zo — Boyo. But this gives us that
(zo — Bo(1 + ,\_oé')y°) € P which contradicts the maximality of .. Thus the only

solutions to (M — XoJ)z = 0 are scalar multiples of z..

Next we suppose that there exists a n, and a z,, noncolinear to z,, such that

(M =XoI)" 2o =0, and (M = AJ)" "1z, #0. Let z; = (M — AoI)"* 7'z, s0 that
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(M = A.I)z; = 0. From what we have shown earlier we have that 2) = kz., k # 0.
This gives us that (M — A J)" "1z, = z,. Now let 2 = — (M = A I)me"2s,,
so that (M — A I)zx; = —Zo or M29 = Ao2z2 — z,. Now A is linear so
M?z2y = M(Xoz2 — 20)
=AMz — Mz,
= Ao(Aoz2 — Zo) — AoZo
= A2z; — 2), 2.
By induction we have that
(6) M"2zy = Alzp ~ A2z,

Now 2z, ¢ P, for if it were, then M"z; € P. Then from (6), after we divide
through by (nA2~!), we get that (222, — z,) € P. But our cone is closed and
—z, is a limit point of (-’3:-22 ~ z,), so we would have that —z, € P. But z, is
an eigenvector of P, so o, # 0 and this contradicts item c) in our definition of a
cone.

Our cone P is reproducing so z; = (v~w), v,w € P, and w # 0 since z; € P.
Now —w < z; since (53 + w) = v € P. Since w € P\{0} and M is z,-positive,

there exists a # > 0 and a p such that MPw < fz,. This gives us that
—Bz, < MP(-w)

< MPzy = Mz = pAPlz, from (6)

pMl -5
2 —

or 22 oy




18

where (pA2~! — 8) < 0 since 22 ¢ P. Then —z; < B”;’::_lzo. Multiplying
through by the positive quantity ﬂ—_—-}%':F-,-, we get that (zo + (ﬁi?_—r)22) € P.
So by Lemma 1.4, there exists a maximal 8, > 0, so that (zo + Bo22) € P. This

gives us that M(z, + f.22) € P. But

M(Io + ﬂoZQ) = Mzo + ﬂol"IZz
= Aozo + ,Bo(/\o:2 - Io)

= (/\o - ﬂo)zo + ﬂvo:Z-

Now (Ao = Bo) > 0 for if (Ao = Bo) < 0, then ([—(Xo = B5)]zo) € P and since
((Xo = Bo)zo + BoMoz2) € P then their sum is in P, that is (BoAoz2) € P, which
contradicts z; € P. Thus (z, + ;\%%‘;—.22) € P. But {’—_'\‘;—. > fo. This contradicts
the maximality of 5,.

Thus the solutions of the equation
(M = XI)"z =0, n=12...
cannot be different from the solutions to
(M - AI)z =0.

Hence we have that A, is a simple positive eigenvalue.

We now prove the second half of our theorem, that the cigenvectors of M in

P are essentially unique. Let us assume that there exists two lincarly independent
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eigenvectors z;,z; € P such that Mz, = Az, and Mz, = A\yz; and that ||z4]] =
|lz2]| = 1. Then by the first half of our theorem, A\; # A,, so we can assume that
A1 > X2. Since M is ﬁo-positive, we know that Ay > 0.

Now by Lemma 1.7, M is z,-positive, so there exists an a > 0 and a p so that
MPzy = Mz; > azy. This gives us that (Ajz2 — az;) € P and since A} > 0 we
have that (z; — :\"Lgx]) € P. So, by Lemma 1.4, there exists a maximal 3, so that
(z2 — Boz1) € P. Thus M(z2 — Boz;) is an element of P. But M(z; — foz;) =
Mz — oMz = Ayzy — BoAi1z). Hence we have that (2o — ﬂof’;ml) € P. So by
the maximality of 8, we must have that -i—:l <1, 0or A; < );. But this contradicts
our assumption that A; > A2. Hence the eigenvector of M in P is essentially

unique, and the proof of our theorem is complete.
The next two theorems, both from Krasnosel'skii, we state without proof.

THEOREM 1.9. Let P be a reproducing cone in Banach space B, and M a com-
pletely continuous, u.-positive linear operator cn B. Then the eigenvalue corre-
sponding to the essentially unique positive eigenvectcr in P, is grecater that the

absolute magnitudes of the remaining eigenvalues.

THEOREM 1.10. Let z, be a positive eigenvector, with corresponding eigenvalue
Ao, of the completely continuous z,-bounded above linear operator M. If the
cone P is reproducing, then the remaining eigenvalues of the operator M are, in

modulus, not greater than As.
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As mentioned before, in the study of differential equations, one often takes
the definition of a u.-positive operator to be slightly different. For our purposes
we will call an operator M u,-positive if for every z € P\{0}, there exists an
a, B > 0 so that ou, < Mz < Bu,. From this point on, this will be the definition
we will be using.
For the final theorem in this chapter, we will be needing one more definition.
If M and N are two lincar operators which map B back into itself, then we say
that M < N (with respect to P), if Mu < Nu for all u € P.
This last result was discovered by Keener and Travis [8,9,15]. It gives com-

parison results between two eigenvalues of two different operators.

THEOREM 1.11. Let P be a cone in the Banach space B. Let M, N : 5 — B be
bounded, linear operators, one of which is u.-positive. If \{ < N and there exists

nontrivial uy,us € P and Ay, Ay > 0 such that
Al'lll < MU] and NU2 S A2“21
then Ay < A2. Moreover, if A\; = A, then u; is a scalar multiple of u,.

PROOF: We will first assume that M is a u,.-positive operator. Then, since u, €
P\{0}, there exists a 3; > 0 so that Mu; < Byu.. But A\ju; € Muy, so we have
that Aju; < Biu, or %’;u, < u,.

Now u; € P\{0} so there exists an a; > 0 so that aque < Mu,. But M < N,
so ayu, < Mu; € Nu,. This gives us that ag(%l;)ul < auo £ Nuy € Aus. So

2‘2’%1-‘[}1 S A2u2. Thus (u2 - ﬂU]) € ?1 \thre ‘B = Z:i: > 0.




By Lemma 1.4, there exists a maximal 3, so that (uz ~ Bou;) € P. Now

1\!(11.2 - ﬁoul) = AIUQ - AI(ﬂou,)
< Nup — BoMu,

< Aug = BoAjuy.

Thus (u, — Bo(-}:)ul) € P. So by the maximality of 8, we must have that -}i- <1
or A\; < A,

Finally, suppose that A} = A; = A. From above we have that (u; —Bou,) € P,
where 3, is the maximal scalar given to us by Lemma 1.4. If (uz — Bouy) = 0,

then we are done. If not, then there exists an a > 0 so that aus < M(u; — Bou;).

‘ Now from above, we have that -é\—lul < u, so that

a—u; < au,
B 1 <
< M(uz = fouy)
= Muy - foMu,
< Nujp — foMu,

< dug = BoAuy

Thus (uz — fou; — 1) = (u2 — (Bo + 5-)u1) € P. But 2 > 0 contradicts the
maximality of B,. Thus we must have that u; = fou;.
When we started we assumed that M was the uo-positive operator. If N is the

' uo-positive operator, then the proof is very similar, and so will not be repeated.
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Chapter 2
Comparison Theorems for a Right Disfocal

Eigenvalue Problem

I) INTRODUCTION:

Let n > 1, m > 1, k a fixed element of {1,2,...,n — 1} and I = [a,b]. We
define the linear differential operator L, by Lu = u(™) + r(t)u, where u(t) is an
m-column vector function, and r(t) is a continuous function on [a,b]. Also let

P(t) = (pij(t)), Q(t) = (qi;j(t)) be continuous m x m matrix functions on [a, b]

andlet ¢;, for 1 < j <n—kbeintegerssuchthat 0 < <12 < - <21 Sn-1.
We consider the two point right focal eigenvalue problem:
(1) (=1)"'Lu = AP(t)u
Tu=0,
where Tu = 0 denotes the boundary conditions:
v a)=0, i=0,1,..., k=1
wUiNb) =0, j=1,2,....,n—k.
If G(t,s) is the Green'’s function for the scalar boundary value problem,

(2) (-1)"'Ly=0
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where Ly and Ty are as above, but defined appropriately for the scalar case,
then under certain sign conditions on the G(t,s) and conditions on P(t), we can
show the existence of a smallest positive eigenvalue. And with further conditions
on P(t), that its corresponding eigenvector is essentially unique with repect to a

‘cone’. We also have comparison results for the eigenvalue problems (1) and (3),

(3) (=1)"7'Lu = AQ(t)u

Su =0,

where Su = 0 are boundary conditions similar to those above.

Our results are new, even in the scalar case. Our technique will be to use
the theory of u.-positive operators with respect to a cone in a Banach space.
We then will use sign conditions on a Green’s function and then appropriately
define an integral operator which will map a cone back into itself. The theory of
operators acting on a cone, can be found in books by Krasnosel’skii [12], Deimling
[2], and Guo and Lakshmikantham [5]. Related papers include those of Eloe and
Henderson [3], Gentry and Travis [4], Hankerson and Peterson (6,7}, Krein and
Rutman [13], Keener and Travis [10,11], Kreith [14], Schmitt and Smith [16],

Tomastik [17,18], and Travis [19).

II) THE GREEN'S FUNCTION:
In this section we give sufficient conditions for the existence and give an

explicit form for the Green’s function for our problem (2). Also, we will give
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certain sign conditions of the Green’s function. Some of these sign conditions are
new. Theorems 2.1 and 2.2 and Lemmas 2.3, 2.4 and 2.5 are a result of work by
Peterson and Riddenhour {15]. We present their work without proof.

We will need the following definition.
Definition: The differential equation Ly = 0 is called right disfocal on an interval
I if there does not exist a nontrivial solution y of Ly = 0 and points t; < 15 <
- € tn € I such that yO=D(¢;)=0fori=1,2,...,n.
We will also need to introduce some notation. For each fixed s in the inter-
val [a,b], let {yo(t,s),41(t,5),...,yn—1(t,s)} be the set of (linearly independent)

solutions of Ly = 0, satisfying the intial conditions:
(])(t S)I —6jka OS],kSTL'—l,

where 6;x is the Kronecker-delta function

5._{0, for j £k
k= 1, forj=k.

THEOREM 2.1. Let Ly = 0 be right disfocal on [a,b]. Then, for each fixed s €

[a,b], the Green's function for (2) exists and is given by, fora <t < s,

0 ye(t,a) ... yn-a(t,a)
Gt,s) = i (bs)  yiVe) ... yi(b,0)
S —_—
D : : . :
g (b,s) yin D, a) ... y{"iY(b,a)

If s <t < b, then we replace the zero in the first row, first column by Yn-1(t,s)

with everything else remaining the same.




In the above formula, D is given by:

w(ba)  yba) ... yiV(b,a)

y{" (b, a) yi';),(b,a) S (X
D=

yf;"-*)(b,a) yfg,;l*)(b,a) ey ")(b a)

To present the next theorem, we need to consider the following partition of
n-tuples. We will say that (i;,72,...,in) < (J1,J2,--.,Jn) if there exists an integer
m such that

i) ig =g fork=1,2,...,m—1
1) i < Jm
i) iy <jrfork=m+1m+2,...,n
We can now give a comparison theorem and sign conditions on the Green'’s

functions from different boundary value problems.

THEOREM 2.2. Let Ly = 0 be right disfocal on [a,b], and suppose that
(i13i27"'ain—k) < (jlaj?v--'ajn—k) where 0 S]l < j2 <---< jn-—k <n-1 If

Gi,..i,_.(t,s) is the Green’s function for




and Gj,...j,_,(t,s) is the Green’s function for

Ly=0
yD@)=0, 1=01....,k—1

Y9y =0, i=1,2,...,n -k,

then G, (t,s) <GP . _ (t,5) on(a,b)? forp=0,1,...,i.

“In—tk

We note that the above theorem gives us a sign condition on G(t,s). Since it is
well known that Goj...n—k~1(%,$) > 0 on (a,b)? we have that if (71,72,...,tn—k) >
(0,1,...,n — k), then Gj,....;,_,(t,$) > 0 on (a,b)?.

The above two theorems are proved using the following lemmas.
LEMMA 2.3. Let L* be the adjoint operator defined by L*z = z(™) 4 (=1)"r(t)z,
corresponding to our operator Ly = y(™ + r(t)y. Then Ly = 0 is right disfocal if
and only if L*z = 0 is right disfocal.

Our next lemma gives a relation between our set of solutions to Ly = 0 and

a set of solutions to L*z =

LEMMA 2.4. Fori=0,1,...,n —1, let z,(t,s) be solutions on [a,b], to

(= = b5, 0<j<n—1,
Then, for 0 <i,7 < n -1, we have

v (t,s) = (-1)H 5506, )

“n-—j=—1
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for all t,s € [a,b].

This lemma is proved by applying the Lagrange identity to y;(t,7) and

Zn—j—1(t,s) and evaluating at t = s and t = 7.

By using the adjoint realtions of Lemma 2.4, it is easy to show that for any

fixed t,
a r 1) r, (1)
(4) (5;) {yj (t,5)} =(-1) yj—r(tss)

on [a,b] x [a,b] for0<7, j<n—-1,0<7<j.

The next lemma is a crux to all of our results.

LEMMA 2.5. If Ly = 0 is right disfocal, and y is a nontrivial solution to (2), then

y(t) # 0 for all t € (a,b).

This last lemma is proved by assuming that there exists a t, € (d, b) and a
nontrivial solution y, to Ly = 0, such that y(¢,) = 0. Then using the bound-
ary conditions with a Rolle’s Theorem argument, one can contradict Ly = 0 is
right disfocal. It is important to note that this lemma also holds for the adjoint

equation.

We can now give a sign condition on certain derivatives of the Green’s function
at the end points. To establish the sign condition at ¢ = b, we need a bit more
notation. Consider our boundary conditions at ¢t = b. Suppose that 7; > 0, then

we define £, = 0. If i; = 0, then we define k,, 1 < ko, < n — k to be such that
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ij=j7~1forj=1,2,..., ko —1and ko < tg,41 (if ko <n—%). So, for example,
if we have the (n — k)-tuple (33,72,...,tn-k) = (0,1,2,5,...,in—¢), then &, = 3.
THEOREM 2.6. Let Ly = 0 be right disfocal and G(t,s) be the Green’s function
for (2). Then G ¥ (a,s) > 0 for all s € (a,b). Further, we define k, as above, then
(=1)ke G (ke)(b,s) > 0 for all s € (a,b).

PROOF: We will first show that G(¥) (a,s) > 0, for all s € (a,b). After taking k
derivatives and evaluating at t = @, we have that the first row R, of G®*) (a,s) is
= (0, yik)(a a), yk_H (a,a),... ,yf,_zl(a,a)) = (0,1,0,...,0). Now, define f(s)

on an open interval which contains [a, b] by

yfl")l(b.s) yﬁi)l(b,a) yf,")l(b,a)

ybs)  yP0be) .. g (ba)
f(s) =

K0, W) e 0 (b0)

)n k+1

So we have that G¥) (a,s) = =X~ f(s) on [a,8]. Now, we can .show that
f(s) # 0 for all s € (a,b). We first transform f into its equivalent adjoint form
using Lemma 2.4. Then f satisfies L*z = 0 and the equivalent adjoint boundary
conditions. So from the adjoint form of Lemma 2.5, we have that f(s) # 0 for all
s € (a,b).

Now, consider any element in the first column of f. By using (4), we have
that (L) {y{), (b, s)} ems = (=1)y0),_i(5,8) = 0, for 0 < j < (n = 1) = inoy

and 7 € {7;,%2,...,tn=k}. (If in—x = n — 1 then we dcfine j = 0.) This tells us

that f{)(b) = 0for 0 < j < (n—1)—ip—k. Now, letting j =n—1—1i,_;, we




have that

() = (1)

yf;";“(b b) y
0y (ba)
0y (ba)

=(-1)
1 yii-:]-k)(b a) (ln lz)(b a)
v (ba)  yil(b,a) y{ (b,0)
= (=1)/(-1)"~*H1 yﬁ'ii(b’a) y,(c'j_?z(b,a) y,(,")l(b,a)
yi’;;*’(b,a) yi‘:;’(bm ""*’(b a)

k41
yf,")l(b,a)

(2 (b,0)

v, (6,0 yiii(ba) ¥, (ba)
yf:’_)k(b,b) yi‘i)x(b’a) yf.")x(b,a)

oty *’(b & e Y 0,0)

It is a standard argument to show that the above determinant is positive. This

gives us that (—1)7(—1)"~*+15U)(b) > 0. Now, since f()(b) =0, for 0 < i < 3,

we can use a Taylor series expansion on (—1)"~%+1f(s), about b, to get that

(P £() = (-0 OB EZE 1 o((e - pp).

This tells us that for a sufficiently small § > 0, if j is even, then (=1)"~**+1f(s) > 0
for all s € (b—6,b). If j is odd, then (=1)""*+1f(s) < 0 for all s € (b — 6,b), or
(=1)7{(=1)"~**+1 f(s)} > 0 for all s € (b—6,b). In either case, for a small enough
6, we have that (=1)"=k+1f(s) > 0 for all s € (b — 6,b). But, we have already
shown that f is of one sign on (a,b). Thus (—1)"~*+1f(s) > 0 for all s € (a,b).

(_1)n-t+1
D

This gives us that G*) (a,s) = f(s) > 0 for all s € (a,b), and so the

first part of our thieorem is proved.
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To prove our sign condition at t = b, we suppose that ¢; = 0 and k, is defined

as before. We define the function f on an open interval containing [a, b] by

] (00 B ety () IR At (N
(—=1)n=* | 382 (b,9) yk”)(b,a) yf,")l(b,a)
f(s) =
D N . .
Wi bs) v ba) o i (ba)

By defining f in this manner, we have that G (*)(b,s) = = 1)" f(s) for s € [a, b).
Like before, we show that f(s) # 0 for all s € (a,b) by first transforming f into
its equivalent adjoint form using Lemma 4. Then f satisfies L*z = 0 and the

equivalent adjoint boundary conditions. So from the adjoint form of Lemma 3,

we must have that f(s) # 0 for all s € (a, ).

Consider any element in the first column of f. By using (4), we have that

(—)J{y"’ (b, s)Hemb = (—=1Yyi)_i(b,) =0,

for0<j<(n—-1)—ip—r andi € {11,12,...,in—k}. (f inox = n —1 then we

‘ define j = 0.) This tells us that f()(b) = 0 for 0 < j < (n = 1) = in—k. Now,




letting j = (n — 1) — t,,—&, we have that

y &) (b,b)

. |y (b
£ = -1y | e D

yha) ... ylEl(ba)
v(ba) ... yV(ba)

"'“")(b b) y("‘“)(b a) ... yf,"‘;")(b,a)

0 y{*),q) yi&)(b,a)
|0 BTG Yot (b,)
1 y'"-~’(b a) ¥ (b,a)

45 (b, a) gl k)

= (D=1

= (=1)/(=1)"F(-1)*

yMI(be) (ke ... yM(ba)

y{ln-b)(b,a) y,(c:-l—k)(b a) y'(lml-

yi(b,a)  y(b,a)
wW(ba)  ylZ(b,a)

yi'*) (b, a) yE;;)(b,a)

ko ko
y ¥ (ba)  yE)(a)

vt (b,e) i+ (b,0)

k+1

yi"=v(b,a) yﬁx;*kb,a)

1(b,a)

k)(b a)

() (b,0)
y{) (b, a)

yf."“’x)(b, a)
yool(b,a)
yS:°+“(b,a>

(ln k)(b a)
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Now, from our construction of k,, we have that i, < ko < i, so again from

a standard argument we have that the above determinant is strictly greater that

zero. This gives us that (—1)/(=1)"~k(=1)% f()(b) > 0. Now, since f((b) = 0,

for 0 < i < j, we can again use a Taylor series expansion on (—1)"~¥(=1)% f(s),




about b, to get

() HDk () = (- OB ESE 1 o ),

From this we can again see that for § > 0 sufficiently small, that if j is even,
then (—1)"~k(=1)* f(s) > 0. If j is odd, then (=1)""¥(=1)* f(s) < 0 for all
s € (b—6,b), and so (=1)/{(=1)"*(=1)* f(s)} > 0. In either case we have that
(=1)"=¥(~1)* f(s) > 0 for all s € (b — 6,b) for small enough §. But, we have
already shown that f is of one sign on (a,b). Thus (=1)"~%(=1)* f(s) > 0 for all
s € (a,b). This gives us that (—1)kG{*e) (b,5) = gllDL_—h(—l)'c° f(s) > 0 for all

s € (a,b), and so our theorem is proved.

IV) EXISTENCE AND COMPARISON RESULTS:

We will now introduce a suitable Banach space for our eigenvalue problem
(1). Recall that the boundary conditions Tu = 0, for u an m-column Qector, are
u(a) =0, fori =0,1,...,k -1, and uli)(b) = 0, for j =1,2,...,n — k, where
0<1t <iz <--+ <ip—k < n—1 First, let us suppose that i; # 0. When i; # 0,
we will denote these boundary conditions as Tyu = 0.

We now introduce the Banach space
B, = {u € C"([a,b],R™)|uD(a) = 0,i = 0,1,...,k — 1)

with norm |Ju|| = maxo<icn{maxi, s) [u{)(t)|} where |- | is the Euclidean norm.

Following ideas from Hankerson and Peterson [5, 6], and Tomastik's paper [13],
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welet I,J € {1,2,...,m} besuchthat JUJ = {1,2,...,m}and INJ =0. (It is

permissible for I = @ or J = 0.) Let K be the ‘quadrant’ cone in R™ defined by

K={z=(z1,...,zm)|zi 20if2€ ], ; <0if i € J}.

Although some of our results will hold for any solid cone in R™, we will just
concern ourselves with K being a ‘quadrant’ cone in R™. Define §; to be the
discrete function §; = 1if1 € I, and é; = -1 if 1 € J. We can then equivalently
define the cone K to be K = {z € R™|&iz; > Ofori = 1,2,...,m}. This
also allows us to define the interior of K as K° = {z € R™|6§;zi > Ofori =
1,2,...,m}.

We now define the reproducing cone Py C By by Py = {u € By |u(t) €K, t €

[a,b]}. This gives us the following Lemma concerning the interior of our cone P;.

LEMMA 2.7. Let the cone P, in the Banach space B, be defined as above. Then

the interior of P, is given by
PP = {u € B |u(t) € K° t € (a,b] and u'¥(a) € K°},
or equivalently

e = {u € By |6;ui(t) > 0, ¢ € (a,4] and §;uP(a) > 0,i=1,2,...,m}.

PROOF: Let Q@ = {u € B) |u(t) € K°, t € (a,b] and uF(a) € K°}. First we will

show that @ C P;. Let u be an arbitrary element of Q, so we want to find an ¢ > 0
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so that the ball B(u;¢) C P;. For a vector function z(t) on {a, 8] C [a, b] we dcfine
the distance function d, g)(z(t), 0K) to be the distance between the function z(t)
on [a,B] and the boundary of the cone K. Let €1 = 1d, j(u{¥)(a),dK), so we
have that €, > 0 since u*)(a@) € KX°. Now u(¥) is a continuous function, so there
exists a § > 0 so that u(¥)(t) € B(u(¥(a);e;) C R™, for all t € [a,a + §]. We note

that this gives us that djg,q45(u?(t),0K) > ;.

Thus we have that u(t) € K° for all t € [a + 6,0]. Then, if we now let
€2 = 3dja464)(u(t),0K) we also have that €, > 0 since the graph of u(t), which is
compact on [a + 4, b], and K do not intersect. We note that in this case, we have

that d[a+5,b](u(t), oK) > ea.

Let € = min{e;,e2} > 0. Then we have that B(u;e) C P;. To show this, we
let z € B(u;¢). Then ||z—u|| < € so in particular we have that |z(¥)(a) - uf*)(a)| <
€1 = 1dj,53(u¥)(a),0K). This tells us that 2(¥)(a) € K°. Now ||z — u|| < ¢ also
tells us that |[z(M)(¢) — u(¥)(¢t)] < € for all ¢ € [a,a + 6. This gives us that
z8)(t) € K° for all t € [a,a + 6. If this were not so, then since :(¥)(a) € K° and
z(¥) is continuous, there would exists a t, € [a,a + 8] so that z(F)(t,) € OK. But
from the note above we know that d[a_,,+5](u(")(t),al(:) > €; 2 €. This gives us
that |z(F)(t,) — u(¥)(,)] > € which is a contradiction. Thus z(¥)(t) € K° for all

t € [a,a+ 6.

Now, this last statement tells us that for: =1,2,...,m, 6i:,(-k)(t) > 0 for all

t € la,a + 6]. Thus 6.':,“-”(0 is a strictly increasing function on [a,a + §] with
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6.-sz-1)(a) = 0 for each . Hence we have that éizgk_l)(t) > 0 forallt € (a,a+ 6],
for i = 1,2,...,m. Thus 5;2,(-k_2)(t) is strictly increasing on (a,a + 6], with
6;sz-2)(a) = 0 for each 7. Thus 6;sz_2)(t) > 0 on (a,a+ §] for each ¢. Hence, for
each: =1,2,...,m, we have that 6;sz-3)(t) is strictly increasing on (a, a+ 6] with

6, z‘(k-s) (a) = 0. Continuing in this manner, we eventually come to the conclusion
that z(t) € K for t € [a,a + §).

Also, we have that |z(t)—u(t)| < e L ey forallt € [a+6,b]. Thus, 2(t) ¢ 0K or
else we contradiet €2 < djgy44)(u(t),0K). Since z(a+6) € K° and z is continuous,

we must have that z(¢) € K° for all t € [a + 6, b]

Thus 2(t) € K for all t € [a,b]. But this means that z € P;, and since z
was an arbitrary element of B(u;¢), we have that B(u;e) C P;. But u was an
arbitrary element of @ and we found an € > 0 so that B(u;e) C P;. Thus we

have that Q C P;.

We now show that P§ C Q. Let u be an arbitrary element of P{. Suppose
there exists a t, € (a,b] so that u(to) € K. This give us that there exists a
component of u, say u;,, so that u; (to) = 0. Considering the scalar equation,
i, ui,(t) > 0, it can be seen that for any ¢ > 0, since é;,u;,(t,) = 0, we can
find a function §;, z;, (t) € B(6;, ui,;€) so that &, z;, (fa) < 0. If we let the vector
function z(t) equal u(¢) in each component except in the 7, slot, and then in that
slot let (z(t))i, = zi,(t), then z € B(u;e). But 2(¢,) ¢ K since §;, z;, (to) < 0.

Thus z ¢ P;. Now z was based on € > 0. Thus, for any ¢ > 0 we can find a
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z € B(u;€) and z ¢ Py. This contradicts u € P{. Thus u(t) € K° for all ¢ € (a, b].
Now suppose u(¥(a)  K°. So there exists an i so that §;u{*'(a) < 0. Then

for any € > 0 we can find a 2z € B(u;¢) so that 6;2,(“(0) < 0. Thus 6,'::,“) is
strictly decreasing at a. We have that sz-l)(a) = 0 so we can find a § > 0 so
that 6,~sz°'1)(t) < 0 for any t € (a,a + 6. Thus, 6;2(*=2) is strictly decreasing on
(a,a + 6] and 6;2*~?)(a) = 0. Hence §;2(¥=?)(t) < 0 for all ¢ € (a,a + é]. Like
before, by continuing in this manner we come to the conclusion that z(t,) ¢ K
and so z ¢ P;, which contradicts u € P{. Thus we must have that u(¥(a) € K°.
So if u € P? we have that u(t) € K° for all ¢ € (a,b], and also that u(¥(a) €

K°. Thus u € @, and since u was an arbitrary element of P7, we have that

Pp € Q. Thus our lemma is proved.

Now let us suppose that :; = 0. We will denote these boundary conditions
as Tou = 0. As in the last section, let ko, 1 < ko <n —k, be such that i; =5 -1
for j =1,2,ko — 1 and g, -1 < ko < ik, (if ko < n — k).

We now introduce the Banach space
Bo={ueC"([a,b,R™)|u(a) =0,,0<i<k-1,u?(b) =0,0<i < ko -1},

with norm [[u]| = maxo<i<a{max(s 4 [u{?(¢)]} where |- | is the Euclidean norm.
We now define the reproducing cone Py C By by Po = {u € Bo |u(t) €K, t €

[a,b]}. We also have a lemma concerning the interior of this cone Py.

LEMMA 2.8. Let the cone Py in the Banach space By be defined as above. Then
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the interior of Py is given by
P = {u € By|u(t) € K% t € (a,b), u®¥)(a) € K°, and (—1)*u*)(b) € K°}
or equivalently

P = {u € By | $;uift) > 0, t € (a,b), 6;u'F(a) > 0, and

(—l)k‘&'ufk’)(b) >0,1<:<m}.

PROOF: The proof of this lemma is very similiar to the proof of Lemma 2.7. Let
Q = {u € By |biui(t) > 0, t € (a,b), 6ulF(a) > 0, (-1)kGul*(8) > 0,1 <i <
m}. First we will show that @ C P§. Let u be an arbitrary element of @, so we
want to find an € > 0 so that the ball B(u;e) C P;. Now, from the argument in
Lemma 2.7, we see that if we let €; = %d[a‘b](u(k)(a),akf) > 0, then there exists a
61 > 0 such that u(®)(¢) € B(ul¥)(a);e1) C R™, for all t € [a,a + 6;].

If we let &5 = 1dj, g((—1)* u(ke)(),0K) > 0, then there exists a 6;_» > 0 such
that (—1)%u(k)(t) € B((=1)*u¥)(a);e2) C R™, for all t € [b — 63,b]. We note
that this gives us that djs_s, 5((—1)% u()(t),0K) > e2.

Since u(t) € K® for allt € [a+6,,b—6;) if we let €3 = %d{a+51,5_5,](u(t),3kf),
then we have that €3 > 0 since the compact graph of u(t) on [a + 6;,b — é,], and
0K do not intersect.

Let € = min{e;,€9,€3} > 0. Then we have that B(u;e) C Py. To show this,
we let z € B(u;¢). Then, similiar to the arguments in Lemma 2.7, we have that

2(t) € K for all t € [a,b — 6], for some § > 0.
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Also, since ||z — u|| < &, we have in particular we have that |z(*)(b) -
u(k)(B)] = |(—=1)ke z(ke)(b) — (=1)*e ulke)(b)| < 2. Then since (—1)* ulke)(b) € K°
and
€2 = 3djq yy((-1)F u(ke)(}), 0K) > 0, we have that (—1)*z(k)(b) € K°.

Now ||z — u|| < € also tells us that |(—1)%e2(ke)(t) — (=1)keulke)(t)| < ¢ for
all t € [b— 6,,b]. This gives us that (—1)%z(*ke)(¢) € K° for all t € [b — 62,b]. If
this were not so, then since (—1)*z(k)(b) € K°® and (—1)* z(¥) is continuous,
there would exists a t, € [b — 63,b] so that (—1)*ez(k)(t,) € K. But from the
note above we know that d[,,_az,,,]((-—l)"“u(")(t), OK) > €3 2 €. This gives us that
|2(k)(t,) — ulke)(t,)| > & which is a contradiction. Thus (—1)kz(k)(t) € K° for
all t € [b— 6,8}

This last statement tells us that for ¢ = 1,2,...,m, §(=1)% sz’)(t) > 0 for
all t € [b—6,b). Now, since zfj)(b) =0forj=0,1,...,ko—-1,7=1,2,...,m,
we can use a Taylor series argument (as in the proof of Theorem 6), to show that
§izi(t) 2 Oforallt € [b—62,b],2=1,2,...,m. Hence 2(t) € K for all t € [b—¥§,b].

Combining our cases we have that z(t) € K for all t € [a,}]. But this
means that z € Py, and since z was an arbitrary element of B(u;e), we have
that B(u;e) C Pp. But u was an arbitrary element of Q and we found an ¢ > 0

so that B(u;e) C P;. Thus we have that @ C Pg.

We now show that Py C Q. Let u be an arbitrary element of Pg. Now,

following arguments similiar to the ones in Lemma 7, we see that u(t) € X° for
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all t € (a,b), and that u(¥)(a) € K°.

Now suppose (—1)¥eulke)(b) ¢ K°. So there exists an i so that
6i(—=1)keulke)(b) < 0. Then for any ¢ > 0 we can find a z € B(u;¢) so that
i(~=1)k ) (b) < 0. Now, 2(b) = 0 for j = 0,1,...,k.. So, again using a
Taylor series argument, we can show that §;2;(t) < 0 on (b— é,b) for a sufficiently
small § > 0. But then 2(t) ¢ K for t € (b — 6,b) which tells us that z ¢ Py. This
contradicts u € P. Hence we must have that (—1)*eu(k)(b) € K°.

So if u € P we have that u(t) € K° for all ¢ € (a,b), and also that u(¥)(a) €
K° and (—1)keu(ke)(b) € K°. Thus u € Q, and since u was an arbitrary element

of Pg, we have that Py C Q. Thus our lemma is proved.

With our Banach spaces and cones suitable defined, we can now proceed on

to our first existence result.

THEOREM 2.9. Let Ly = 0 be right disfocal, and assume that 6;6;p;;(t) > 0, for
t € [a,b], 1 <1i,5 £m, and that thereis at, € [a,b] such that p; ;, (tc) > 0. Then

for eigenvalue problem (1)

(=1)""! Lu = AP(t)u
Tiu=0, (so(iy >0),
there exists an eigenvector z, € P, with corresponding positive eigenvalue A,

which is a lower bound for the modulus of any other eigenvalue for the corre-

sponding problem.
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PROOF: To solve this problem, we will seek the eigenvalues of the linear integral

operator M : B, — B, defined by
b
Mu(t) = / G(t,s)P(s)u(s)ds, a<t<hb,

where G(¢, s) is the Green’s function for (2). Now the eigenvalues of the boundary
value problem (1) are reciprocals of the eigenvalues of the operator M. We note
that zero is not an eigenvalue of (1) since Ly = 0 is assumed to be right disfocal.

Now an argument using the Arzela-Ascoli Theorem shows that M is a com-
pact operator. We now show that M: P; — P;. Let u be an arbitrary element
of P,. If we can show that §;(Mu(t)); > 0 for all t € [a,b], i =1,2,...,m, then
Mu € P,. Consider the ith component of P(t)u(t), (P(t)u(t))i; > =1 Pis(t)us(2).
Now 6;8; = 1, and é;u;(t) > 0 so we have that for all ¢ € [a, 8],

Si(P(t)u(t))i = ) _ 8i6;pi(t)85u;(t) 2 0,
j=1

since 6;6;p;;(t) 2> 0 by hypothesis. From the note following Theorem 2.2, we have

that G(t,s) > 0 on (a,b) x (a,b). Thus
b m
Si(Mu)i(t) = / G(t,s) Z&,-éjp,-j(s)5ju_,~(s) ds >0,
a j=1

for t € [a,8),1 <7< m and so Mu € P,. Since u was an arbitrary element of P,
we have that M is a positive operator, that is M: P; — P,.
In order to apply Theorem 1.6, we must find a nontrivial u, € P;, and

k
an €, > 0 so that Mu, 2 €ouo. Let uo(t) = ﬂfﬁ)—&,eg,, where e, is the
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unit vector in R™ in the i, direction. We note that u € B;. Now the jth

component of uo(t) is uoj(t) = ("k‘!')t&,-, 8i,;j, where §;; is the Kronecker delta

function. Thus §u.;(t) = {6,-6.-,9_—;!')—.—}5,-.,- > 0, so u, € P;. We have that

,-°u£f.)(a) =1>0.

i, Uoi, (t) = Q—T.“—): > 0, on (a,b] and that é
We now consider Mu,(t). Since M: Py — P, we know that §;(Mu,);(t) >
0 = §juoj(t) for 1 < j <m, j #i.. When j =i, we have that

X m
i (Muo)is(®) = [ G(t.5) Y 8 8ypias(e)bsues () ds

. =1
=/ G(t,5)6;, 6i,Pi,i, (5)8i, toi, () ds

b DAY J
= [ 6t E 7

>0, for t € (a,b),

since by Theorems 2.2 and 2.6, G(t,s) > 0 for t € (a,}], s € (a,b), and pi,;, (to) >
0, pi,i, continuous. So we have that §;, (Mu,);,(t) > 0 for all t € (a, b].

Now, Theorem 2.6 tells us that G(¥)(a,s) > 0 for all s € (a,b), so we can
see from above that 6.'0(Mu°)$.k)(a) > 0. Hence, we can find an ¢; > 0, suffi-
ciently small, so that §;, (Muo)gf)(a) - eléi.uf,’f.) (a) > 0. Now 5‘-.(Mu°)ff)(a) -
elﬂi,uf,{:Z(a) =0, for j = 0,1,...,k — 1. Thus we can find a § > 0 so that
i, (Muo);, (t) — €16i, uoi, (t) 2 0, for all t € [a,a + §].

Now both &;, (Mu,);, (t) and §;, uoi, (t) are positive on [a + 6, b] so we can let

] N o/t t
.y = ming, 4 5.5)(8i, (Mus )i, (t) > 0.

maxig 44,5} 6, Uoi, (1)




This gives us that &;, (Mu, )i, (t) — €26i, uoi, (t) 2 0, for all t € [a + 6, b].
Finally, letting €, = min{ey,€2} we have that &;, (Mu. )i, (t) — €06, toi, (1) >
0, for all ¢t € [a,b]. This gives us that Mu, > eo.us with respect to the cone P;.

By applying Theorem 1.6, the conclusions of our theorem follow.
We have a parallel theorem in the case that 7; = 0.

THEOREM 2.10. Let Ly = 0 be right disfocal, and assume that 6;6;p;;(t) 2 0, for
t € [a,b],1<1,j £m, and that thereis a t, € [a,b] such that p; ;, (t.) > 0. Then

for eigenvalue problem (1)
(=1)*~! Lu = AP(t)u
Tou=0, (soi;=0),
there exists an eigenvector z, € Py with corresponding positive eigenvalue A,

which is a lower bound for the modulus of any other eigenvalue for the corre-

sponding problem.

PROOF: Like before, we solve this problem by seeking the eigenvalues of the linear

integral operator A : By — By defined by
[
Mu(t) = / G(t,s)P(s)u(s)ds, a<t<b,

where G(t, s) is the Green'’s function for (2), under the boundary conditions Toy =
0. Again, the eigenvalues of the boundary value problem (1) are reciprocals of the
eigenvalues of the operator M, and we note that zero is not an eigenvalue of (1)

since Ly = 0 is assumed to be right disfocal.
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Now, an argument identical to the one in the proof of Theorem 2.9, shows
that our compact operator M maps Py into Py.

In order to apply Theorem 1.6, we must find a nontrivial u, € Py, and an

€o > 0 so that Muo > €ouo. In this case we let

a) (t ~ b)ke
! ko!

uo(t) = (—=1)k (¢ —k 8. €.,

where ¢;, is the unit vector in R™ in the i, direction. We note that u € By. It is
easy to see that §; times the jth component of u.(t) is nonnegative. Hence u, € 7.
We also have that 6;, uo;, (¢) > 0 on (a,b) and that é;, uf,’f.)(a) = (=1)k (L::’,)—h >0,
and (—1)%&;, u®)(b) = Lo 5 o, |

We now consider Mu,(t). Since M: Py — Py, we know that 6;(Mu,);(t) >

0 = 6juoj(t) for 1 £ j < m, j # io. When j =1, we have that

b — o) ( — b)ke
6,—,(Mu°),~,(t)=/ G(t, 8)pi,i, (s)(—1)* (t k! LC k.,b!) ds >0,

for t € (a,b) since by Theorems 2.2 and 2.6, G(t,s) > 0 for t € (a,b), s € (a,b),
and p;,i, (t.) > 0, pi,i, continuous. So we have that §;, (Mu,);,(t) > 0 for all
t € (a,b).

Now similar to the proof of Theorem 2.9, we can find an¢; > 0,and a é; > 0,
so that &;, (Muo)i, (t) — €16, uoi, (t) 2 0, for all t € [a,a + §].

Also, Theorem 2.6 tells us that (=1)* G (¥)(b,s) > 0 for all s € (a,b), so we
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“ can see from above that

(=1)% 5:',(Muo)£f°)(b) - /b(_l)"'G("’)(b,s)p,-. o (s)(=1)* (t _k!a)k (t _kj)k. e

> 0.

Thus, there exists an €2 > 0 so that (—=1)%§;, (Muo)ff)(b) —ea(=1)*6;, u(k)(b) >

Ol

0. Now (=1)k&;, (Muo)(b) — e3(~1) 6, (5) = 0, for j = 0,1,... ko —

to Yot

1. Thus by using a Taylor series expansion, we can find a 6 > 0 so that
8i, (Muo);, () — £26i, uoi, (t) 2 0, for all t € [b— 62,8].
Now both &;, (Mu.);, (t) and &;, u.i,(t) are positive on {a + é;,b — 62] so as
. in the proof of the last theorem, we can find an €3 > 0 so that §;, (Mu.);,(t) —
€26, uoi (t) > 0, for all t € [a + 61,b — b2).
Finally, letting €, = min{e;,€2,€3} we have that
8i, (Muo);, (t) = €08i, uoi, (t) 2 0, for all t € [a,b]. This gives us that Muo, 2> €ou,
with respect to the cone Pp. By applying Theorem 1.6, the conclusions of our

theorem follow.

If we have stronger conditions on P(t), we get better results. Again we will

have parallel theorems.

THEOREM 2.11. Let Ly = 0 be right disfocal on [a,b] and assume 6;6;p;;(t) > 0,

‘ 1<14,5 <m,forallt€ [a,b], and pi; equals zero only on a set of measure zero.
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Then for the eigenvalue problem (1),

(=1)" Lu = AP(t)u

Tiu=0, (soi >0)

there exists an essentially unique eigenvector z, in Py, and its corresponding
eigenvalue is simple, positive and smaller then the modulus of any other eigenvalue

for this eigenvalue problem.

PROOF: As in the last proof, we define the compact linear integral operator M
by

b
Mu(t):/ G(t,s)P(s)u(s)ds,

where G(t,s) is the Green’s function for (2). We wish to show that M is a u,-
positive operator so that we can apply Theorem 1.8. To do this, we will show that
M: P,\{0} — P} and then apply Lemma 1.5. |

Let u be an arbitrary element in P;\{0}. Then, there exists an
o € {1,2....,m} and a t, € (a,b), so that &;ou;, (to) > 0. (By the continuity
of u;, we can assume, without loss of generality, that t, € (a,b).) Since u;, is
a continuous function we have that there exists an interval to the right of ¢, on
which é;, u;, is positive.

Now for each i = 1,2,...,m, 6;:6;, pii, 2 0, pii, is continuous and zero only

on a set of measure zero. Thus, for each i, we can find an interval to the right of

to, on which each 6,6;, pii, is positive. Taking the intersection of these m + 1 right
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intervals, we have an interval (e, §) C [a, b] such that 6ibi, pii, (t)6i, ui (t) > 0, for
all t € (a,B), i =1,2,...,m. Thus, since G(¢,s) > 0 for all ¢ € (a,b], s € (a,b)
by Theorem 2.2 and Theorem 2.6, and since by hypothesis §;6;, pi;, > 0, we have
that for each : = 1,2,...,m,

b m
EMu)tt) = [ Glt,906 Y pis(olus(e)ds

=1

b m
=/ G(t,s)Zé.-«Sjp,-_,-(s)«Sjuj(s) ds
e j=1

8
> / G(t,5)6:6:, pis, (s)6i, ui, (s) ds

> 0.

Thus we have that §(Mu)i(t) > 0 for all ¢t € (a,b]. But this gives us that
Mu(t) € K° for all ¢ € (a,b].

Now we also know by Theorem 2.6 that G(¥)(a,s) > 0 for all s € (a,b).
Following the same argument as above, this gives us that (M u)(F)(a) € K°. Since
Mu(t) € K° for all ¢t € (a,b] and (Mu)®¥)(a) € K° we have by Lemma 2.7 that
Mu € P;. Now u was an arbitrary nontrivial element of P;. Thus we have that
M: Pi\{0} - P;. So by Lemma 1.5, we have that M is a uo-positive operator.

Hence we can now apply Theorem 1.8, and the conclusions of our theorem follow.

If we have that i, = 0 then we have results similar to Theorem 2.11.

THEOREM 2.12. Let Ly = 0 be right disfocal on [a, b] and assume that 6ib;pi;(t) >

0,1<1,5 <m, for allt € [a,b], and p;; equals zero only on a set of measure zero.
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Then for the eigenvalue problem (1),

(=1)""! Lu = AP(t)u

Tou=0, (soi; =0),

there exists an essentially unique eigenvector z, in P§, and its corresponding
eigenvalue is simple, positive and smaller then the modulus of any other eigenvalue

for this eigenvalue problem.

PROOF: As in the last proof, we define the compact linear integral operator M

by

b
Mu(t) = / G(t, s)P(s)u(s) ds,

where G(¢,s) is the Green's function for (2), with boundary conditions Tyy = 0.
We will again show that M is a u.-positive operator and then apply Theorem 1.8.

To do this, we again show that M: Po\{0} — P§ and then apply Lemma 1.5.

Let u be an arbitrary element in Po\{0}. Then following arguments identical
to those in the last Theorem, we have that there exists an interval (a, 8) C [a, )
and an i, so that 6;6; pii, (t)6i,ui,(t) > 0, for all t € (a,B8), ¢ =1,2,...,m.

Then, since G(t,s) > 0 for all t € (a,b), s € (a,b) by Theorem 2.2 and Theorem
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2.6, and since by hypothesis é;8;, pii, > 0, we have that for each: =1,2,...,m,

b m
5,-(Mu),~(t)=/ G(t,s)&Zp,-j(s)uj(s)ds
a j=1
b m
- / G(t,s)Z&&,-p,-j(s)éjuj(s)ds

B
> / G(t, $)6:6: pisa ()61, s, (5) ds

> 0.

Thus we have that 6;(Mu);(t) > O for all t € (a,b). But this gives us that
Mu(t) € K° for all t € (a,b).

Now we also know by Theorem 2.6 that G (*)(a,s) > 0 for all s € (a,b). Fol-
lowing the same argument as above, this gives us that (Mu){*)(a) € K°. Theorem
2.6 also tells us that (—1)k G (¥<)(b,s) > 0 for all s € (a,b). Hence, similar to the

argument above, we have that
(—1)k &;(Mu){*)(b) > 0,

and so (—1)ke (Mu)(k)(b) € K°.

Since Mu(t) € K° for all t € (a,b), (Mu)*)(a) € K° and (—1)* (Mu){*)(b) €
K° we have by Lemma 2.8 that Mu € Py. Now u was an arbitrary nontrivial
element of Py. Thus we have that M: Po\{0} — Pg. So by Lemma 1.5, we have
that M is a u,-positive operator. Hence we can now apply Theorem 1.8, and the

conclusions of this theorem follow.
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We have now come to our main theorems which give comparison results for
cigenvalue problems with different boundary conditions. The boundary conditions
we will consider pertain to the n-tuples (¢1,15,...,¢n—k) and (j1,72,..., jn—t). We
let Ty = 0 denote the boundary conditions y()(a) = 0 for i = 0,1,...,k — 1, and
y)(d) = 0 for j = 1,2,...,n — k. Also we let Sy = 0 denote the boundary

conditions y*)(a) = 0 fori = 0,1,...,k—1,and yU)(b) =0 fori = 1,2,...,n—k.

THEOREM 2.13. Let Ly = 0 be right disfocal and assume that the continuous
matrix function P(t) and Q(t) have the properties:
a) Thereis an i, € {1,2,...,m} and a t, € [a,b] such that pi i, (to) > 0;
b) 0 < 6;6;pi;(t) < 6i659ij(t), fort€la,b], 1<, <m;
¢) Each gi; =0 only on a set of measure zero.
Further assume that (iy,11,...,tn—k) < (J1,72,---,Jn—k) and that 7; > 0.

Then there exists smallest positive eigenvalues Ao, Ao of (1) and (3), respectively,
(=1)""' Lu = AP(t)u (-1)""! Lu = AQ(t)u

Tiu=0 Syu=0.

both of which are positive, A, a lower bound in modulus and A, stricily less in
modulus then any other eigenvalue for their corresponding problems, and both of
their corresponding eigenvectors belong to Py. Further, A, is a simple eigenvalue
and its corresponding eigenvector belongs to Py. Moreover, Ao < Ao and if A, =

A, then P(t) = Q(t) on [a,b).

PROOF: Let G{t,s) be the Green’s function for Ly = 0, Tyy = 0 and H(¢,s)

be the Green’s function for Ly = 0, S;y = 0. We define the integral operators
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M,N: By - B, by
5 b

Mu(t) = /a G(t,s)P(s)u(s)ds and Nu(t) = /a H(t,s)Q(s)u(s) ds.
By Theorem 2.2, we have that 0 < G(t,s) < H(t,s) on (a,b)?>. So from earlier
proofs, we know that M, N: P; — P;. Now by Theorem 2.9, M possesses a posi-
tive eigenvalue 1/\, which is an upper bound, in modulus, for all other eigenvalues
of M, and its corresponding eigenvector z, belongs to P;. By Theorem 2.11, we
have that N has a positive, simple eigenvalue 1/A,, which is strictly greater, in
modulus, than all other eigenvalues of N, and its essentially unique eigenvector
v, belongs to P7.

To get a comparison between these two eigenvalues we need to show that
M < N, with respect to P;. Let u be an arbitrary element in P;. Then for each

fixed 7 € {1,2,...,m}, we have from the hypothesis,
6i6;qij(t) 2 6i6;pij(t)) 20 fort€[ad], 1<j<m.
Since u € Py, we know that éu,(t) > 0 for all ¢t € [a,b), 1 £ j £ m. This gives us

that

Y Gigii(us(t) 2 D bipij(t)uj(t) 2 0

Jj=1 j=1
for t € [a,b], 1 < j < m. Then from Theorem 2.2 we have that

b m b m
[ HCOY basou@ds 2 [ 69 tpaoueds 2 0
a j=1 a =1

b b m
5.-(/ H(t,s) > qij(s)uj(s)ds) > 5,-(/ G(t,s) Y pij(s)u;(s)ds)
a J a J=l

=1

v
o
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Since ¢ was arbitrary, this tells us that component wise,

b b
6.-(/ H(t,s)Q(s)u(s)ds)i > 6.'(/' G(t,s)P(s)u(s)ds)‘. > 0
forall t € [a,}],:=1,2,...,m. Thus,

(/b H(t,s)Q(s)u(s)ds ~ /b G(t,s)P(s)u(s)ds) = (N — M)u(t) € K
for all t € [a,b]. Thus Nu > Mu with respect to the cone P;. Since u was an
arbitrary element of P;, we have that M < N,

Now (Alo, Zo) and (AL‘, Uo) are eigenpairs of M and N respectively, so we have
that the inequalities of Theorem 1.11 hold. Also, similair to the proof in Theorem
8, we have that N is uo-positive. From above we have that M < N, and so we
can apply Theorem 1.11 to give us that ,\1—. < a-or A <A |

Finally, suppose that A, = A, = A, then Theorem 1.11 tells us that zo = kv,
for some nonzero scalar k. Then AP(t)zo = Lzo = kLvs = EAQ(t)ve = AQ(t)z..
Thus AP(t)ze = AQ(t)ze or (Q(t) — P(t))zo = 0 since A # 0. Comparing each

component ¢ of (Q(t) — P(t))z., gives us that

m

D (@) = pii(D)ze5(1) =0, te€la,b).
j=1
So that
> 16:85(0ij(t) = pii(t))6;205(t) =0,  te (a, b].
j=1

Since z, € Py we have that §;z,(t) > 0 for all t € (a,b]. This plus the fact that

6i6;9ij(t) 2 6;6,pij(t) >0 fort e la,b], 1 <1,7 < m, gives us

pij(t) = qij(¢), t€(a,b), 1<1i,5<m.




Finally, by continuity it follows that P(t) = Q(t) on the closed interval [a, b].

Our companion theorem for Theorem 2.13, requires more of a correlation

between the boundary conditions.

THEOREM 2.14. Let Ly = 0 be right disfocal and assume that the continuous
matrix function P(t) and Q(t) have the properties:

a) There is an i, € {1,2,...,m} and a t, € [a, b] such that p; ; (to) > 0;

b) 0 < 6i6;pi;(t) < 6ib;qij(t), fort€[a,b], 1<1i,j<m;

c) Each g;; = 0 only on a set of measure zero.

Further assume that (i1,%1,...,in—k) < (J1,72+.--,Jn—k), 21 = 0 and that the
integer ko defined for (i1,12,...,in—k) Is also the k. defined for (j1,j2,.-.,Jn—k)-
Then there exists smallest positive eigenvalues Ao, Ao of (1) and (3), respectively,

(=1)""1 Lu = AP(t)u (=1)""! Lu = AQ(t)u
Tou=0 Sou = 0.
both of which are positive, Ao a lower bound in modulus and A, strictly less in
modulus then any other eigenvalue for their corresponding problems, and both of
their corresponding eigenvectors belong to Py. Further, A, is a simple eigenvalue

and its corresponding eigenvector belongs to P§. Moreover, A, < o and if Ao =

A, then P(t) = Q(t) on [a,b).

PROOF: The proof for this theorem is virtually identical to the proof of the last
theorem. We let G(t,s) be the Green’s function for Ly = 0, Toy = 0 and H(¢,s)

be the Green’s function for Ly = 0, Soy = 0. We define the intcgral operators
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M,N: By — By by
b : b
Mu(t) =/ G(t,s)P(s)u(s)ds and Nu(t)= / H(t,s)Q(s)u(s)ds.

By Theorem 2.2, we have that 0 < G(t,s) < H(t,s) on (a,b)?. So from earlier
proofs, we know that M,N: Py — Po. Now by Theorerz 2.10, M possesses
a positive eigenvalue 1/)\, which is an upper bound, in modulus, for all other
eigenvalues of M, and its corresponding eigenvector z, belongs to Py. By Theorem
2.12, we have that N has a positive, simple eigenvalue 1/A,, which is strictly
greater, in modulus, than all other eigenvalues of N, and its essentially unique
eigenvector v, belongs to Pg.

Now, the argument to show that M < N with respect to the cone Py is
identical to the argument in Theorem 2.13. Thus, by applying Theorem 1.11 we
have that A, < Ao. If A, = Ao = A, then by following the argument in Theorem

2.13, we see that P(t) = Q(2) on [a, b).




Comparison Theorems for Eigenvalue Problems

for Right Disfocal Differential Equations

I) INTRODUCTION:
| Let n > 1, m > 1 and define Lu = u(™ + p,()u("=V 4 ... 4 p,(t)u where
u(t) is an m-column vector such that u € C"([a,b],R™) and p; € Cla,b}, i =
1,2,...,n. Also let P(t), Q(t) be continuous m x m matrix functions on [a, b] and
let t; <ty <--- < tn, wheret; € [a,}],1 =1,2,... ,n.

We consider the n-point right focal eigenvalue problem:
(1) (=1)""1Lu = AP(t)u

Tu=0
where Tu = 0 denotes the boundary conditions
() =0, i=1,2,...,n
If G(t, s) is the Green'’s function for the scalar boundary value problem,

(2) (=1)" 'Ly =0

where Ly and Ty are as above, but defined appropriately for the scalar case, then

under certain sign conditions on G(t,s) and conditions on P(t) we can show the
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existence of a smallest positive eigenvalue. And with further conditions on P(t),
that its corresponding eigenvector is essentially unique with respect to a ‘cone’.

We also have comparison results for the eigenvalue problems (1) and (3),

(3) (-1)""'Lu = AQ(t)u

Tu=0.

Our results are new, even in the scalar case. Our technique will be to use
sign conditions on the Green'’s function, appropriately define an integral operator
and then apply the theory of uofpositive operators with respect to a cone in a
Banach space. The theory of operators on a cone, can be found in great detail
in the books by Kranosel’skii [9] and Deimling [2]. Related papers include those
of Eloe and Henderson (3], Gentry and Travis [4], Hankerson and Peterson {5,6],
Keener and Travis (7,8], Kreith [10], Schmitt and Smith [11], Tomastik [12,13],

and Travis [14].

IT) CONE THEORY:

The following will be a short review of the definitions and theorems we will be
using for our results. This theory was developed in great detail by Krasnosel'skii
[9].

Let B be a Banach space and P a closed, non-empty subset of B. We say
that P is a cone provided that if u,v € P then au+ fv € P for all a,5 > 0, and

that if —u,u € P then u = 0, the zero element of B. We say that a cone P is
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reproducing provided that B =P — P = {u —v|u,v € P}. A cone is called solid if
it has a non-empty interior, P° # 0.

The cone will induce a partial ordering on our space B, if we write u < v to
mean that v—u € P. If M and N are operators on B, then we will write M < N
(with respect to P) provided that Mu < Nu for all u € P. A linear operator M
on B, is called positive if P is invariant with respect to M, that is M: P — P.
The operator M is called u,-positive provided u, € P, and for every u € P\{0},

there exists positive k3, k, (generally depending on u) such that

k1u° S Mu S kzuo.
We will be using the following theorems, which can be found in [9].

THEOREM 1. Let B be a Banach space and P C B be a solid cone. f M: B — B

is a linear operator such that M: P\{0} — P°, then M is u,-positive with respect

tc P.

THEOREM 2. Let P be a reproducing cone and M a linear compact positive
operator. Assume there exists a nontrivial uo € P and an ¢, > 0 such that
Mu, > €ouo.. Then M has an eigenvector z, € P with corresponding eigenvalue
Ao 2 €, and ), is an upper bound for the moduli of the remaining eigenvalues of

M.

THEOREM 3. Let P be a reproducing cone and M a linear compact u,-positive op-

erator. Then M has an essentially unique eigenvector in P and the corresponding
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cigenvalue is simple, positive and larger than the modulus of any other eigenvalue

of M.

Our last theorem of this section is from Keener and Travis [7], and is a

generalization of a result from Travis [14].

THEOREM 4. Let M and N be linear operators of which one is u,-positive. If
M < N and there exists uj,u2 € P\{0} and A\, A2 > 0 such that Mu; > \u,
and Nuz < Aug, then Ay < A\; and if A} = A; then u; is a scalar multiple of

Uusz.

I1I; THE GREEN'S FUNCTION:

In this section we will give sufficient conditions for the existence and give an
explicit form for the Green’s function for our problem (2). We need the following

definition.

Definition: The differential equation Ly = 0 is called right disfocal on an interval
I if there does not exist a nontrivial solution y of Ly = 0 and points t; < t; <
-+- < tn € I'such that 3¢ "~D(t;)=0fori=1,2,...,n.

We will also need to introduce some notation. For each fixed s in the inter-
val [t;,t,]), let {yo(t,s),y1(t,$),...,yn-1(t,s)} be the set of (linear independent)

solutions of Ly = 0, where

yij)(t,s)lg-_:, = Oj5k, 0 .<. ]’k S n-— la
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and ;4 is the Kronecker-delta function

{ 0, forj#k
Sk = :
1, forj=k.

We can now give a theorem about our Green'’s function.

THEOREM 5. Let Ly = 0 be right disfocal on [a,b]. Then the Green’s function

G(t, s), for the right focal problem

(-1)*"'Ly=0
Ty=0
exists and is given by:
for s € [tk,tk+1], t S S
0 vi(t, 1) cer Yn-a(tyth)
0 yi(t2,t) coe Ypog(t2, )
- k—1),,
N 0 y &tk t) o S )
»8)= TF | (k k k
D yfz—)x(tk+la3) yf )(tk+1,t1) yi)l(tk+1,t1)
: k
g (terzrs) 3 g ts) ooy (kg2 1)
v trs) N tets) o T ()

if s <t then we replace the zero in the first row, first column by yn—1(t,s) with
everything else remaining the same.

This holds for k =1,2,...,n—1, and D is given by

y1(t2,tn) yp(ta,tn) ..o yn—(f2,tn)

y1'(ts, ta) y2(tastn) oo Ynoa(tastn)

yf"_l)(tmh) yg"'l)(tn,tl) yf":_';l)(tmtx)
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PRrOOF: To show that G(t,s) is our Green'’s function for (1) we must show that

G(t,s) is well defined and that it satisfies the properties from Coppel [1):
i) As a function of ¢, G(¢, s) satisfies Ly = 0 on [t;,s) and (s,1,);
il) TG(-,s) = 0 for each fixed s;
iii) As a function of ¢, G(t,s) and its first n — 2 derivatives are continuous at

t = s, while G("=D(st 5) — GIn—D(s~,5) = = (-1,

The Green’s function, G(t,s) is well defined provided that D # 0. To show
this, we will assume that D = 0 and show this lead to a contradiction. Let
A be the (n — 1) x (n — 1) matrix, A =y (tiy1,11)), for 1 < 4,j < n =1,
so we have that |A| = D, where |A| is the determinant of A. Since D = 0
there exists a nontrivial column vector C = (Ci,...,Cn=1)T so that AC = 0.
Let 2(t) = Cini(t,t1) + Cay2(t,t1) + - -+ + Cn-1Yn-1(t,t1). Since z(t) is a linear
combination of solutions to Ly = 0, we have by the linearity of L thét Lz = 0.
Now z(t;) = 0 since each y;(t1,¢1) = 0. Also 2')(tj41)=0forj =1,2,...,n -1,
since =(t;4,) is the j-row of A times the column vector C and AC = 0. So
Lz =0, Tz = 0 and : is not identically equal to zero since € is nontrivial. This
contradicts Ly = 0 is right disfocal. Thus D # 0 and G(¢, s) is well defined. Now

that we have established that D # 0, a standard argument using Taylor series will

show that D > 0.

To prove the properties i)-ii), we first fix s, as an arbitrary element of [t;,¢,].

Then to prove i), for t < so, we have G(t,s0.) = day1(t,t1) + -+ + dnyn-1(t,1;)
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where the d;’s are constants which can be determined by expanding the determi-
nant of G(t,s.) along the first row. Thus, in the variable t, G(t,s,) is a linear
combination of solutions of Ly = 0, and so is itself a solution of Ly = 0 on [t;,s,).

Similarly, G(t, s.) is a solution of Ly = 0 on (s., ty).

To show that G(t,s.) satisfies the boundary conditions, we first note that
G(t3,s0) = 0 since the first row of the determinant of G(?,, s,) is all zeros. Also,
we have that G*)(ty41,80) = 0, for £ = 1,...,n — 1, since in this case the the
first row and the (k 4+ 1)%* row are equal, so the determinant is zero. Thus from

the properties of determinants we have T'G(-,s.) = 0, so ii) is proved.

To prove iii), let r and 7 be variables where r < s, and 7 > so. Then, with
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So € [tk,te+1] we have G(7,50,) — G(r,5.) =

yn-l(‘r,so) yl(T,tl) yn—l(T’tl)
0 yi(ta,t1) . Ynoa(te,ts)

—1)n- - k-
(=n~-t 0 YE V) L P )

k k k
ys.-)l(tk-n,so) y§ )(tk+1,t1) ys._)l(tk+1,t1)

ys:-l-—il)(tm%) ygn—l)(tmtl) ys:n—-il)(tmtl)

0 yl(ratl) yn—l(r,tl)
0 yita, 1) oo ynog(t2,th)

_ (=nnt 0 04 t) L gV ()

k k k
ys;-)l(tk-t-laso) y{ )(tk+1,ix) yf..)l(tk-n,tl)

Y (e, se) 3"V (tmt)) o TV (tn,t)
Yn-1(7,80)  w(rt)—wn(t) .. yn-1(7t1) = yn-1(r,ty)
0 yi(t2,tl) y;:—l(tZatl)

1171 k-1 k—
= =0t 0 y ) vy (tk,th)
k k k
ys:—)l(tk-O-laSO) yg )(tk+lvt1) yf*-zl(tk“’tl)

W tmse) ) W )
Now lim,.,r_.,,{y;")(r,tl) - yg-'.)(r,tl)} =0forj=12,...,n-1;i1=0,1,...,n—
1. Also lim,—,, yf,il,(r,so) = 0for i = 0,1,...,n ~2. Thus G¥(s},s,) —
G (s7,s0) =0fori=0,1,...,n ~2, so we have that G(t, so) and its first n — 2

. . . . . . -1
derivatives are continuous at t = s,. Finally, since lim,_,,_ ys,"_l )(1,s° =1, we




have G("=1(s¥,50) — G{"~V(s7,50) =

1 0

0 y;(t2stl)
- ; R
- 0 u (e 1)

k k
¥ (trgrrs0) v (errnta)

y" 0 (0, s0) 38"V (s th)
yi(ti’vtn) y;(t%tn)
" n
— ]
( l)n—l Y1 (t3 tn) yz(ts,tn)
-~ D ; :
A (1) 3V (e ta)
-1 n-1
= (—-—I;)__ D-

So G- (s¥,5,) = G(*=1)(57,5,) = (=1)"~! and condition iii) is satisfied.

Since so was an arbitrary element of [t1,t,), we have that G(t, s) is the Green’s

function for (2).

We close this section with the following hypothesis:

HypoTnesis (H). Let Ly = 0 be right disfocal on [a,b]. We assume that the

Green’s function for (2), has the following properties:

1) G(t,s) >0 fort € (t1,tn}, s € (t1,tn);

ii) G'(t1,s) > 0 for s € (t1,tn).

This hypothesis is not true in all cases, but we will show sufficient conditions

for (H) to hold for n = 2,3 and 4.

0
y;n—l(t2atl)

k-1
yfn—l )(tkv tl)

k
yf,_)l(tku, 1)

y1 ) (s th)
y:l-l(t27tn)
y::-l(t:h tﬂ)

y{" 1) (B 1)
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IV) EXISTENCE AND COMPARISON RESULTS:
We will now introduce a suitable Banach space for our eigenvalue problem
(1). Let
B = {u € C"([t1,ta), R™) | u(ts) = 0}
with norm ||u|| = maxo<i<n {maxy, ) [u(?(t)]} where |- | is the Euclidean norm.
Following ideas from Hankerson and Peterson [5,6], and Tomastik’s paper [13], we
let I,J C {1,2,...,m} be such that JUJ = {1,2,...,m}and INJ = 0. (It is

permissible for I = @ or J = 0.) Let K be the ‘quadrant’ cone in R™ defined by
K={z=(z1,...,2m)|zi20ifi e, z; <0ifi € J}.

Although some of our results will hold for any solid cone in R™, we will just
concern ourselves with K being a ‘quadrant’ cone in R™. Define §; to be the
discrete function §; = 1if : € I, and §; = ~1if i € J. We can then equivalently
define the cone K to be K = {z € R™|éz; > Ofor: = 1,2,...,m}. This

also allows us to define the interior of K as K°® = {z € R™|§;z; > Ofor: =

We now define the reproducing cone P ¢ Bby P = {u € Blu(t) € K, t €

[t1,2n]}. This gives us the following Lemma concerning the interior of our cone P.

LEMMA 6. Let the cone P in the Banach space B be defined as above. Then the

interior of P is given by

P°={u€ Blu(t) e K® te€ (t,ta) and u'(t;) € K°}.
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PROOF: Let Q = {u € Bju(t) € K°, t € (t1,t,) and u'(t;) € K°}. First we will
show that ) C P°. Let u be an arbitrary element of ¢}, so we want to findan s > 0
so that the ball B(u;€) C P. For a vector function z(t) on [a, 8] C [t;,t,] we define
the distance function dj, g)(z(t), 0K) to be the distance between the function z(t)
on [a, 8] and the boundary of the cone OK. Let ¢, = %d[,h,”](u'(tl),aﬁ), so we
have that €; > 0 since u'(t;) € K°. Now u' is a continuous function, so there
exists a § > 0 so that u'(t) € B(u'(t1);€1) C R™, for all t € [t;,t; + 6]. We note

that this gives us that djy, 4, 44)(u'(),K) > €.

We have that u(t) € K° for all t € [t; + §,%,]. Then, if we let €2 be
€2 = 3d[4, +6,,)(u(t), 0K) we also have that £, > 0 since the graph of u(t), which
is compact on [t; + §,t,] and 9K do not intersect. We note that in this case, e

have that d, 15,1,)(u(t),0K) > €.

Let € = min{e;,e2} > 0. Then we have that B(u;€) C P. To show this, we
let z € B(u;¢). Then ||z — u]| < € so in particular we have that |z'(¢;) — u'(t;)] <
&1 = 3d¢, 0, (¢'(t1), 0K). This tells us that ='(¢;) € K°. Now ||z —u|| < ¢ also tells
us that |z'(t) — u'(t)| < ¢ for all t € [t;,t; + &]. This gives us that z'(t) € K° for
all t € {t;,t; + 6]. If this were not so, then since 2'(t;) € K° and 2’ is continuous,
there would exists a t, € [t1,t; + 8] so that 2/(¢,) € K. But from the note above
we know that djy, ¢, 4+5(u'(t),0K) > €1 > €. This gives us that |2'(t.) —u'(to)| > €
which is a contradiction. Thus z'(t) € K° for all t € [t;,t) + §]. Now this in turn

tells us that for 1 = 1,2,...,m, 6;z{(t) > Ofor all t € [t;,t; + 6]. Thus é;z,(t) is an
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increasing function with 6;z;(f;) = 0 for each . Hence we have that 6,z;(t) > 0
for all t € [t;,t) + 6], for i = 1,2,...,m. That is, z(t) € K for t € [t;,t; + §].

Also, we have that |z(t) —u(t)] < € < €; for all t € [t; + 6,tn]. Thus,

z(t) ¢ OK or else we contradict djy, 45,¢,)(u(t),0K) > €2. Since z(t; +6) € K° and

z is continuous, we must have that z(t) € K° for all ¢t € [t; + 6, t,]

Thus 2(t) € K for all t € [t;,t,). But this means that z € P, and since 2
was an arbitrary element of B(u;¢), we have that B(u;e) C P. But u was an
arbitrary element of  and we found an € > 0 so that B(u;e) C P. Thus we have

that Q C P°.

We now show that P° C Q. Let u be an arbitrary element of P°. Suppose
there exists a t, € (¢;,tn] so that u(t,) € OK. This give us that there exists a
component of u, say u;,, so that u; (to) = 0. Considering the scalar equation,
i, u; (t) > 0, it can be seen that for any £ > 0, since 6;, u;, (t.) = 0, wé can find a
function $;, z;, (t) € B(6;, ui,;€) sothat é;, zi, (to) < 0. If we let the vector function
z(t) equal u(t) in each component except in the i, slot, and then in that slot let
(=(1))i, = =z (t), then z € B(u;¢e). But 2(t,) ¢ K since 6;,zi,(to) < 0. Thus
z ¢ P. Now z was based on € > 0. Thus, for any € > 0 we can find a z € B(u;¢)

and z ¢ P. This contradicts u € P°. Thus u(t) € K° for all t € (t),ts].
Now suppose u'(t;) ¢ K°. So there exists an ¢ so that §;u}(¢t;) < 0. Then for
any £ > 0 we can find a = € B(u;¢) so that 6;z/(t;) < 0. Thus §;z] is decreasing

at ¢;. We have that z;(t;) = 0 so we can find a § > 0 so that §;z;(t) < 0 for any
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t € (t1,t; + 6). But this gives us that z(t.) ¢ K and so z ¢ P, which contradicts
u € P°. Thus we must have that u'(t;) € K°.

So if u € P° we have that u(t) € K° for all t € (#1,t,], and also that

u'(t;) € K°. Thus u € Q, and since u was an arbitrary element of P°, we have

that P° C Q. Thus our lemma is proved.

With our Lemma out of the way, we can now proceed on to our first existence

result.

THEOREM 7. Assume hypothesis (H) holds, 6;6;pij(t) 2 0, for t € [t1,t,), 1 <
i, < m, and that there is a t, € [t1,tn] such that p; i, (tc) > 0. Then for

eigenvalue problem (1)

(=1)""! Lu = AP(t)u
Tu=0,
there exists an eigenvector =, € P with corresponding positive eigenvalue A, which

is a lower bound for the modulus of any other eigenvalue for the corresponding

problem.

PROOF: To solve this problem, we will seek the eigenvalues of the linear integral

operator M : B — B defined by
tn
Mut)= [ Gt 9PEuls)ds, <<t
1

where G(t, s) is the Green’s function for (2). Now the eigenvalues of the boundary
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value problem (1) are reciprocals of the eigenvalues of the operator M. We note
that zero is not an eigenvalue of (1) since Ly = 0 is assumed to be right disfocal.

Now an argument using the Arzela-Ascoli Theorem shows that M is a com-
pact operator. We now show that M: P — P. Let u be an arbitrary element of P.
If we have §;(Mu(t)); > 0for all t € [t;,t,),2=1,2,...,m, then Mu € P. Con-
sider the ith component of P(t)u(t), (P(t)u(t)),= 3L, pij(t)u;(t). Now §;6; =1,

and 6;u;(t) > 0 so we have that for all ¢ € [t;,t,],

Si(P(tyult))i = Y_ 8:6;pis(t)6;u;(t) 2 0,
J=1

since 6;6;pi;j(t) = 0 by hypothesis. From Hypothesis (H), we have that G(t,s) > 0
for t € [t1,tn] and s € (¢1,t,). Thus
tn m
i(Mu);(t) = /t 1 G(t,s) ;aiajp;j(s)ajuj(s)ds >0,
j=
for t € [t1,tn),1 <i < m,so Mu € P. Since u was an arbitrary element of P, we
have that A is a positive operator, that is M: P — P.

In order to apply Theorem 2, we must find a nontrivial us € P, and an
€o > 0 so that Mu, > €ouo. Let uo(t) = (t — t1)é;, i, , where e;, is the unit
vector in R™ in the i, direction. This gives us that the jth component of u,(t),
uo;(t) = (t —1t1)6;, 6i, j, where 6;; is the Kronecker delta function. Thus §;u.;(t) =
{6;6i,(t — t1)}bi.; 2 0, so uo € P. We note that 6, u.i,(t) = (t —t;) > 0, on

(t1,tn] and that é;,ug,; (t) =1>0.
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We now consider Muo(t). Since M: P — P, we know that §;(Mu,);(t) >
0 = §juo;(t) for 1 < j <m, j# 1. When j =i, we have that

6ia(Muo)as(§) = [ Glt,8) D b ()8t (5)ds
t =1

H

= / " G(t,5)8i, 6i, Piyi, (8)6i, oi, () ds

tn

= G(t,s)pi,i.(s)(s —t1)ds

L3

>0, forte€ (t1,tn),

since by hypothesis (H) G(t,s) > 0 for t € (t1,ts}, s € (t1,tn), and p;,;,(ts) > 0,
pi.i, continuous. So we have that &;, (Mu.);, (t) > 0 for all t € (t;,¢,). Since
again by hypothesis (H), G'(t1,s) > 0 for all s € (t,,tn), we can see from above
that é;, (Mu,);_(t1) > 0.

So for €; > 0 sufficiently small, we have that &;, (Mu,);, (t1)—€16;,uq; (t1) >
0. Now 6;, (Mu,)i, (t1) — €16i, uoi, (t;) = 0, so by continuity, there exists a § > 0
so that
6i, (Muo);, (1) — €16, wos, () > 0, for all t € [t;,t; +6). Also, both 6, (Mu,);, (t)

and §;, uo,, (t) are positive on [t; + §,t,] so we can let

- min, 45,6,)(6i, (Mt )i, (t)

> 0.
ma.x[“ +5,1,) (5i. Uoi, (t)

€2

This gives us that
8io (Muo);, (t) — €26;, uoi, (t) 2 0, for all t € [t; + 6, t,)].

Finally, letting ¢, = min{e;,£2} we have that é;, (Mu, )i, (t) — €66i, o, (t) >
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0, for all t € [t;,t,]). This gives us that Mu, > €,u, with respect to the cone P.

By applying Theorem 2, the conclusions of our theorem follow.
If we have stronger conditions on P(t), we get better results.

THEOREM 8. Assume hypothesis (H) holds, and 6;6;pij(t) > 0,1 < 7,1 < m, for
all t € [t1,tn), and pi; equals zero only on a set of measure zero. Then for the

eigenvalue problem (1),

(=1)""1 Lu = AP(t)u

Tu =0,

there exists an essentially unique eigenvector z, in P°, and its corresponding
eigenvalue is simple, positive and smaller then the modulus of any other eigenvalue

for this eigenvalue problem.

PROOF: As in the last proof, we define the compact linear integral operator M
by

Mu(t) = /t " G(t, s)P(s)u(s) ds.

We wish to show that M is a u,-positive operator so that we can apply Theorem
3. To do this, we will show that M: P\{0} — P and then apply Theorem 1.

Let u be an arbitrary element in P\{0}. Then, there exists a to € (t;,t,)
and an i, € {1,2,...,m} so that é,,u;,(to) > 0. (By the continuity of u,;, we can

assume, without loss of generality, that ¢, € (¢;,t,).) Since u;, is a continuous
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function we have that there exists an interval to the right of ¢, on which é;, uo is
positive.

Now for each i = 1,2,...,m, 6;6;,pii, 2 0, pii, is continuous and zero only
on a set of measure zero. Thus, for each i, we can find an interval to the right of
to, on which each §;6;, pi;, is positive. Taking the intersection of these m + 1 right
intervals, we have an interval (a, 8) C [t1,tn] such that 6;6;, pii, (t)6;, ui, (t) > 0, for

allt € (a,B),1=1,2,...,m. Thus,since G(t,s) > 0 forall t € (t;,ta], s € (t1,tn)

by hypothesis (H), and 6;6;, pi;, = 0, we have that for each: =1,2,...,m,

S(Muit) = [ Gt )6 3 pis(s)u;(s)ds

t

- /t t G(t, s)

> / ” Gt )68, pi. ()5, wso (5) ds

6i6;pij(s)6juj(s)ds
1

j=

> 0.

Thus we have that §;(Mu)i(t) > 0 for all ¢t € (¢1,tn]. But this gives us that
Mu(t) € K° for all t € (t,t,].

Now we also know by hypothesis (H) that G'(t;,s) > 0 for all s € (¢;,tn).
Following the same argument as above, this gives us that (Mu)'(t;) € K°. Since
Mu(t) € K° for all t € (),ts] and (Mu)'(t;) € K° we have by Lemma 6 that
vu ¢ P°. Now u was an arbitrary nontrivial element of P. Thus we have that
M: P\{0} — P°. So by Theorem 1, we have that M is a u.-positive operator.

Hence we can now apply Theorem 3, and the conclusions of our theorem follow.
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We also have comparison results between two focal point eigenvalue problems.

THEOREM 9. Assume hypothesis (H) holds and that the continuous matrix func-
tion P(t) and Q(t) have the properties:

a) There is an i, € {1,2,...,m} and a t, € [t1,t,] such that p; ; (t,) > 0;

b) 0 < 6;6;pij(t) < 8ibjqij(t), forte [ty,ta], 1<i,j <m;

c) Each ¢i; =0 only on a set of measure zero.

Then there exists smallest positive eigenvalues Ao, Ao of (1) and (3),
(=1)""1 Lu = AP(t)u (=)™ Lu = AQ(t)u
Tu=0 Tu=0.

both of which are positive, Ao a lower bound in modulus and A, strictly less in
modulus then any other eigenvalue for their corresponding problems, and both of
their corresponding eigenvectors belong to P. Further, A;, is a simple eigenvalue
and its corresponding eigenvector belongs to P°. Moreover, A, < Ao and if Ao =

A., then P(t) = Q(t) on [t),t,].

PROOF: We define the integral operators M,N : B — B by

Mu(t)=/l“G’(t,s)P(s)u(s)ds and Nu(t):/t"G(t,s)Q(s)u(s)ds,

1 1
where G(t,s) is the Green’s function for (2). We then have, from earlier proofs,
that M, N : P — P. Now by Theorem 7, M possesses a positive eigenvalue 1/,
which is an upper bound, in modulus, for all other eigenvalues of M, and its

corresponding eigenvector z, belongs to P. By Theorem 8, we have that N has
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a positive, simple eigenvalue 1/A,, which is strictly greater, in modulus, than all
other eigenvalues of N, and its essentially unique eigenvector v, belongs to P°.

We will now show that M < N, with respect to P. Let u be an arbitrary

element in P. Then for each fixed i € {1,2,...,m}, we have §;6;(g:;(t) — pij(t)) 2

0, for t € [t1,ta), 1 < j < m. Since u € P, we know that §;u;(t) > 0 for all

t € [t1,ta), 1 < j < m. This gives us that
3 6iais (t) — pis(&))us(t) 2 0
Jj=1

for t € [ti,tn), 1 £ j £ m. Now hypothesis (H) tells us that G(¢,s) = 0 on

(t1,t2)%. Thus

/t n G(t,s) Z 6i(gij(s) — pij(s))uj(s)ds = 0

([ 6(t,9) Y (a(0) ~ Pl Dus()ds) 20

Since ¢ was arbitrary, each component of f:l" G(t,s)(Q(s) — P(s))u(s) ds times §;
is greater than or equal to zero for all t € [¢;,t,]. Thus,
f:l" G(t,s)(Q(s) — P(s))u(s)ds = (N ~ M)u(t) € K for all t € [t),t,). Thus
Nu > Mu with respect to the cone P. Since u was an arbitrary element of P, we
have that M < N.

Now (3, 2) and (7, vo) are eigenpairs of M and N respectively, so we have
that the inequalities of Theorem 4 hold. Also, similair to the proof in Theorem 8§,
we have that N is u,-positive. From above we have that M < N, and so we can

apply Theorem 4 to give us that 3= < 2 or A, < A,.
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Finally, suppose that Ao = Ao = A, then Theorem 4 tells us that z, = kve

for some nonzero scalar k. Then AP(t)zo = Lzo = kLvo = kAQ(t)ve = AQ(1)z0.
Thus AP(t)z, = AQ(t)zo or (Q(t) — P(t))ze = 0 since A # 0. Comparing each

component ¢ of (Q(t) — P(t))z., gives us that

D (gi5(t) = pij(t)ze5 (1) =0, t € [t1,tn).
=1

So that

Y 6:85(aii(t) — pii(1)}8i05(t) =0, t € [tr ta].

Jj=1
Since 2z, € P° we have that §;z.(t) >0 forallt € (t1,tn). This plus the fact that

6i6;qi;(t) 2 5i5jpij(t) >forte [tl,tn], 1 <1, <m, gives us
pij(t) = ¢ij(t),  t€(tnta], 154, <m.

Finally, by continuity it follows that P(t) = Q(t) on the closed interval [t;,1,)].

V) EXAMPLES

In our final section, we will give examples for which hypothesis (H) holds.
Example n=2:

In this example we have Lu = u" + p;(¢)u' + p2(t)u. Let t1, ¢; be elements of

any interval I over which L is right disfocal. Then, from Theorem 5, our Green’s

function for (2) is

1 0 yl(t’tl)
m’y;(tz,s) yi(t2,t1)
» ‘y,(t,s) yi(t,t)
viltat)) | ot (25,5) i (t2,t1)

G(t,s) =
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Now consider y; (¢, s) for any t, s € [t1,t2). Weknow that y)(s,s) = Oandyi(t,s) #
0 for all ¢ # s or else by Rolle’s Theorem we-contradict Lu = 0 is right disfocal.
Thus y;(t,s) < 0 for all ¢ < s and y;(¢,s) > 0 for all £ > 5. We also know that
yi(s,8) = 1 and that y{(¢,s) # 0 for allt > s or else we again have a contradiction.

Thus we have that yj(¢,s) > 0 for all t > s.

Then, when t; <t < s < t; we have that

G(t,s) = Eﬁt—l){-y;(tz,swl(t,m}

_ yi(ta, s)n(t ta)
yi(t21t1)

So G(t,s) > 0 and positive when t1 <t < s.

When t; < s <t <t; we have

-1
G(t,s) = ————{n(t,8)y (t2,t1) — 41 (L2, 8)ua (¢, 1)}
yi(ta,t1)
- y; (t2vs)yl(tstl) - yl(tws)y; (t2~t1) s 0.
y;(thtI)

Let z(t) = yi(t2,s)y1(t,t1) — vi(t, s)y;(t2,t1). Then 2 is a solution of Ly = 0
and further, 2'(t2) = 0 and 2(s) > 0 since we have shown that G(t,s) > 0 on
(t1,5]. Thus we must have that z(t) > 0 on [s, t2] or else we contradict Ly = 0 is
right disfocal. Thus we have that G(t,s) > 0 on [s,tz] and hence G(t,s) > 0 for

t € (t,ts], s € (t1,12).




Also we have that

'ty s)Y! (21, 8
G'(ty,s) = 1 ( 2'8)3/1( 1,11)
y](t2atl)
= yll(ths)
yi(t2at1)

>0, s € (tl,tz).

Thus we have that when n = 2, hypothesis (H) holds over any interval on which

Lu = 0 is right disfocal.

In our next two examples we will take L to be Ly = y(*). We note here that
when Ly = y("), then Ly = 0 is right disfocal over any interval I. This can be
seen by the fact that if y is a solution of Ly = 0, which satisfies y(i=1)(¢;) = 0,
for i = 1,2,...,n,then y(™(t) = 0, for all t € I. This tells us that y(®=1(¢) is
constant, but y(»=1)(t,) = 0. Thus y(*~1 = 0 so y("~?) is constant. But again
y("=D(t,_1) = 0, so y»=?) = 0. Continuing in this manner we get that y = 0.
Thus the only solution to Ly = 0 which satisfies the boundary contitions is the

trivial solution, that is, Ly = 0 is right disfocal on I.

By taking Ly = y{™, our set of n linearly independent solutions to Ly = 0

is {1,(t—s),...,(t = s)""D/(n - 1)!}, where s is a fixed element of [t;,t,]. So

k
in our notation we have yi(t,s) = ('—I—f)—, and for each &k = 0,...,n -1, yr is a

solution to the initial value problem Ly = 0, yij) =6,,0<7<n-1.

This will simplify our Green’s function considerably, since yij) = Yk , for
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j £ kand yij) =0 for j > k. Also we have that

yi(t2, 1) yp(t2,t1) ... ynoa(t2 1)

yy (ta, 1) Yo (t3, 1) cor Ynoa(ta,ty)
D =

Pt t) T e tn) o B (tanth)

1 wi(t2,ty) ... yn—2(t2,t1)

0 1 oo yn-3(ts, 1)

0 0 1

SoD=1.




Example n = 3:

When n = 3 our differential equation (—=1)"~!Ly = 0 becomes Ly = y©®) =
0 with boundary conditions y(t1) = y'(¢t2) = y"’(t3) = 0. We will show that
hypothesis (H) holds under the condition that (t2 —t;) > (t3 — tz). It can be
shown that if (t3 — ;) > (t2 — t;) then hypothesis (h) does not hold.

From Theorem 5 we have that for this equation, our Green'’s function is

( for s € [t;,12]
0 yi(t,t1)  ya(t,th)
y1(ta, s) 1 n(te, )] 1 <t <s <ty
1 0 1
va(tys) it t) w2(tt)
y1(t2, s) 1 y1(te, )| 1 <s<t<ts,
‘ G(t,s) = ¢ 1 0 1
for s € [t3, 3]
0 wntt) w(tt)
0 1 y1(t2, 1) t) <t <s<ts,
10 1|
v2(t,s) wi(tt) w2t ty)
0 1 n(ta,t1) t, s <t<ts.
\ 1 0 1

For hypothesis (H) we need to show that G(t.s) > 0 for t € (¢).13], s € (t1,13),
and that G'(¢1,s) > 0 for s € (¢1,¢3). We will first show that G'(t;,s) > 0 for

s € (t;,t3). First, let s € (t;,12]). Then we have

0 vi(ti,t) ya(ti,th) 0 1 0
G'(tlss) = yl(t%s) 1 yl(tg,tl) = yl(tg,s) 1 yl(h’tl)
1 0 1 1 0 1
_ yl(t'.’as) yl(t'z.fl)

= =1 fQ.f - t,S
1 1 Jl( 1) vi(t2 )

=(ty-t))—(ta—s)=s—t; >0.




If we have that s € [t2,13), then

0 wi(ti,t1) ya(ti,th) 0 1 0
G'(t1,s) =10 1 vi(tz, )| =(0 1 wyi(t2,t1)
1 0 1 1 0 1
1 0 .
= = ty,t1) =(ta —t;) > 0.
1 yi(te,t) vi(ta, t1) = (t2 —t1)

Thus for s € (¢;,t3) we have that G'(t;,s) > 0.

We will now show why the condition (f3 — t2) < (t2 — t1) will insure us that
G(t,s) > 0 when t € (t1,t3], s € (t1,t3). We have two cases to consider, when
s € (t1,t2] and s € [t2,1t3).

Case 1) Fix s € (t1,12).

Ift € (t1,s) then we have G(¢1,s) =0, G'(t1,s) > 0 and

0 0 1
G"(t,s) = y;(tz,s) 1 yl(t2,tl) = —1.
1 0 1

So G(t,s) is concave down on (t;,s] and G(¢1,s) = 0 and G'(t;,s) > 0. Thus,
if G(s,s) > 0, then G(t,s) > 0 for all t € (¢;,s]. Now G(t,s) is continuous at
t = s, so if we can show that G{t,s) > 0 for all ¢ € [s,#3] then we will have that
G(t,s) > 0 for all t € (t,,13], where s is fixed in (1, 2].

Let t € [s,t3] and define

y2(t,s)  wi(tt1)  ya(t.ty)
f(t) = [n(t2,s) 1 yi(tz2,t1) 1,
1 0 1

for t € [t;,t3]. Now f(t) is a three times differentiable function and f(t) = G(t.s)

for t € [s.t3). Thus, f(t) is a solution to our differential equation Ly = 0 and
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satisfies the boundary conditions y'(¢;) = 0 and y"(t3) = 0. Since f"'(t) = 0,
f"(t) is equal to a constant. But f"(¢3) = 0 so f"(¢) = 0 and we have that f'(t) is
equal to a constant. But f'(t2) =0 so f'(t) = 0. Thus f(t) is equal to a constant

on [t1,t3). Evaluating f(t) at t, gives us

y2(t1,8) wi(ti,t1)  y2(t1,t1) y2(t1,s) O 0
f(t1) = |ni(t2,s) 1 yi(t2,t1) [ = (ni(t2,8) 1 wn(te,t1)| = y2(t1, )
1 0 1 1 0 1

So f(t) = f(t1) = y2(t1,8) = gt—';—’z > 0, since s € (t1,t2]. Thus G(t,s) > 0 for
t € [s,t3] when s € (t1,%2). So we have that when s € (t;,t2), G(t,s) > 0 for all
t € (t1,13)].
Case 2) Fix s € [t2,13).

When ¢t < s, we have that G(t,,s) = 0, G'(t1,s) > 0, and like in casc 1,
G"(t,s) = —1. So, like before, we only need to consider G(t,s) when t € [s,3].

Let t € [s,t3] and define

y2(t,8) wi(t,t1)  w(t,ta)
fy=1 0 1 vtz t1) |,
1 0 1

for t € [t1,t3). So f(t) = G(t,s) when t € [s,t3]. Again we know that f"'(¢) =0
and that f''(t3) = 0. Thus f'(t) is a constant. Evaluating f'(t) at s we have

n(s,s) 1 wyi(s,ty) 0 1 w(s,t1)
f’(S) = 0 1 yl(tg,tl) = 0 1 yl(tg,tl)
1 0 1 1 0 1

=yt ))—w(s,h))=(ta—t1)—(s—t;) =t —s L0.

Thus f'(t) < 0 so f(t) is non-increasing on [t;,t3]. So if f(t3) > 0 then we would

have what we want, 0 < f(t) = G(t,s) for t € [s,t3). If we expand f(t3) along the
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first column, we get

y2(t3,s) wits,t1) w2(ta,t1)
, lyx(ts,tl) y2(ts, ty)

f(t3) = (; (]; yl(t;,tl) = y2(ta,s) + 1 y1(ta, 1)
= y2(ts,s) + {y1(t3,t1)y1(t2, 1) — y2(t3, 1)}

- (t:; ;!3)2 + (t3 2—!t1){(t2 _ tl) —- (ts — t2)},

Now gt“—;’-ﬁ is positive, but may be small, so to insure that f(¢3) > 0 we must have
(t3 — t2) < (t2 — ;). Thus if this holds, we have that f(t) > 0 and so G(t,s) > 0

for all ¢ € (tl,t;;] and s € [tg,t;;).

Hence for the boundary value problem, Ly = y®) = 0 and Ty = 0, we have

that hypothesis (H) holds provided that (t3 — t3) < (t2 — t;).

Example n = 4:

In our final example we will take our differential equation to be (—=1)"~!Ly =
~y(4) = 0, with boundary conditions y(*~1)(¢;) = 0, for ¢ = 1,2,3 and 4. Under
the conditions (2 —1;) > (¢4 —t2) and (t3 —t2) > (t4 —t3), we have that hypothesis

(H) holds. For this equation we have that the Green's function is
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( for s € [t1,12]
0 n(t,t1)  w(t,t)  wth)
y2(t2, s) 1 vi(t2,t1)  y2(t2,ta) f<t<s<ty
y1(t3,$) 0 1 vi(ta, t1)
1 0 0 1
ys(t,s) w(tht) w(tt)  ws(th)
y2(t2, s) 1 vi(t2,t1)  v2(t2,t1) f<s<t<ty
y1(ts, s) 0 1 yi(ts, 1)
1 0 0 1
for s € [tz,t:;]
0 n(tt) w(tt)  wtt)
0 1 yi1(t2,t1)  v2(tz,t1) f<t<s<t
v (ts,s) 0 1 y1(ts, t1)
G(t,s) = { 1 0 0 1
‘ y3(tas) yl(tvtl) y2(t’tl) y3(tat1) l
0 1 vi(t2,t1)  vyo(tz,t1) b <s<t<ts
(3, s) 0 1 yi(ts,t1)
1 0 0 1
for s € [t3, 4]
0 wi(t,t1) w2(t,th)  ys(t,t1)
|0 1 vi(tz,t1) ya2(tz,t1) <t<s<t,
0 0 1 y1(t3, 1)
1 0 0 1
va(t,s) w(tt) wa(tty)  ws(tta)
| o 1 pltat) waltat) cectct,
0 0 1 yl(t;;,tl)
| 1 0 0 1

We will first show that G'(t;,s) > 0 for all s € (1,4). In all cases, we have that
the first row of G'(t, s),

-.’l(t) = (Osy;(tvtl)’yé(tvtl)sy!!(tvtl)) = (Ovlayl(t9tl)’y2(t’tl))' So Ii.-'l(tl) =




(0,1,0,0). If we expand G'(t;,s) along the first row, we have

[ |y2(t2,8) wi(t2,t1) wya(ta,ty)
y1(t3,s) 1 ni(ta,t1)| t1 £ s <ty
1 0 1
0 yi(t2,t1)  y2(t2,t1)
G'(t1,8) = { |n(ts,s) 1 (s, t1)] t2 < s <ts,
1 0 1
0 wi(t2,t1) w2(t2,th)
0 1 y1(ts, 1) t3 < s <t
11 o 1

If we consider G'(t;,s) as a function of s, we can define functions hi(s) on [t;,14)

for:=1,2,3 to be

v2(t2,8) wi(t2,t1) wa2(t2,t1)
hi(s) = [ yi1(ts,s) 1 yi(ts,t1)| t1 < s <y,
1 0 1
0 ni(t2, 1) ya(ta,ty)
ha(s) = [ y1(ts,s) 1 n(ts,t1)} t1 <s<ty,
1 0 1
0 yi(tz2,t1) w2(tz,t1)
113(S)= 0 1 yl(ig,,t]) tl SSSt4.
1 0 1

Then hi(s) = G'(t1,s) when s € [t;, ti+1], for i = 1,2,3. We will need to take the
derivative of these functions so we note that (a“—"—)(j)yk(t,s) = (=1)yr—j(t,s) if
k > j and zero otherwise. Also we have that hy(t2) = ha(t2) and ha(t3) = hi(s),

since h3 is a constant function.

Now hj(t;) = O since, in this determinant, the first and last columns are
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equal. Also, we have that

yi(t2,8) wilt2,t1) wy2(f2,th)
h'l(s) = - 1 1 y](t;;,tl) ’
0 0 1

so that h{(t;) = O since, in this case, the first and second columns are equal.

Finally,
1 yi(ta,t) w2(ta,ty)
R"(s)=10 1 n(ts,t1)| =1
0 0 1

The last equation gives us that h} is increasing on [t;,t,]. Now hj(t1) = 0 so
k) > 0 on (t1,t4). So h in increasing on this interval and h;(¢1) = 0. Thus we
have shown, in particular, that hy(s) > 0 for all s in (t1,t2].

Now |

0 wyi(te,ts) ya(t2,t1)!
ha(s) = — |1 1 yi(ts,t1) | = ni(tz2,t1) = (2 — 1) > 0.
0 0 1 -

So h, is an increasing function with h(t2) = hyi(t2) > 0. Thus h; is positive on

[tg,t;;].
Finally, hs is constant and h3(s) = ha(t3) > 0. So h3 is positive on [t3,t4].

Putting this all together we have that G'(t1,s) > 0 for all s in (t;,4).

We will now show why the conditions (t; ~ ;) = (t4 — t2) and (t3 ~ t3) >
(ts — t3) insure us that G(t,s) > 0 for (t,s) € (t1,t4] x (t1,24). We have three

cases to consider.

Case 1: Fix s € (t,12]
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For t; <t < s we have that

0 0 1 yl(tvtl)
G"(t,s) =— y2(t2,8) 1 wilte,t1) wa(tasth)
yi(ta,s) O 1 1 (ts, 1)
1 0 0 1
0 1 mitn)
== yl(t3as) 1 yl(tg,tl)
1 0 1

= y1(t3,s) — {y1(ts, t1) — va(t, t1)}
=3 —s)=(ta~t1))+(t —t1)

=t-s<0 sincet<s.

So G(t,s) is concave down on (1, s], G(t1,s) = 0 and we have already shown that
G'(t1,8) > 0. Thus if G(s,s) > 0, then G(t,s) > 0 for all t in (¢, s]. NO\?;I, since

G(t,s) is continuous at t = s, we only need to show that G(t,s) > 0 for t > s.

We know that in ¢,t # s, G(t,s) satisfies y(4) = 0. Also, sincet > s, s €
(t1,t2], G(t,s) will satisfy the boundary conditions y(*=V)(¢;) = 0, for i = 2,3 and
4. So G™(¢,s) = 0 which tells us that G (3)(¢,s) is a constant. But G (3 (t,,s) =0
so G 3)(t,s) = 0 which tells us that G"(t, s) is a constant. But again, G"(t3,s) =
0so G'(t,s) is a constant. Finally, G'(t2,s) = 0 so we have that G(¢, s) is constant

for t > s. Now, let f(t) be

y3(tv5) yl(tvtl) y2(tvtl) ya(t,t1)

ya(t2,s) 1 vi(t2,t1)  ya2(ta,ta)

y1(t3, s) 0 1 ni(ts, t1)|
1 0 0 1

f&) = -




So we have that f(t) = G(t,s) when t € [s,t4]. Evaluating f at t, gives us

ys(t1,8) wi(h,t1) w2(t, 1) ya(t,th)
y2(t2,s) 1 vi(t2,t1) ya(ta,t1)
f(th)=-
vi(ts,s) 0 1 yi1(ts,ty)
1 0 0 1
y3(t1,s) O 0 0
__|wa(t2,s) 1 wniltz,th) w2tz th)
" |wilta,s) 0 1 i (ts,t)
1 0 0 1
= —y3(t),s) = -gtl—_s—)i >0, since t; < s.

3!

Thus f(t) > 0 for all ¢ in [t1,24]. So G(t,s) > 0 when t € [s,t4]. But this implies

that G(t,s) > 0 for all t € (t;,t4] when s € (t;,12].

Case 2: Fix s € [tg,13). Let t € (1;,s] and consider G"(t,s). As in Case 1, we will
have that G'(t,s) =t — s < 0. This can be easily seen since the only difference
between this Green'’s function and the one in Case 1, is the element yg(tg', s), which
lies in the second row, first column slot. After taking two derivatives of G(t,s),
we will expand along the second column, which has only one nonzero element, in
the second slot. This will eliminate the element y2(22,s), and G"(t,s) will be the
same as in Case 1. Thus G"(t,s) < 0, so G(t,s) is concave down on (?;, s]. Since
G(t1,s) = 0 and G'(¢;,s) > 0, we only have to show that G(s,s) > 0. But then,

by continuity, we only need to show that G(t,s) > 0 for t € [s,4].

We now let t € [s,t4]. We know that G(t,s) is a solution to y*) = 0 on (s, t4]

and satisfies the appropriate boundary conditions. So we have that G (4)(¢t,s) = 0
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and G ¥ (t4,s) = G"(t3,s) = 0. This gives us that G'(¢, s) is a constant function.

Let f(t) be defined on t € [t;,t4] by

y3(t,s)  wi(t,t) wa(t,ty)  wa(t,ty)

0 1 vi(t2,t1)  y2(t2, 1)
f(t)=- '
y1(ts,s) 0 1 y1(ts, ty)
1 0 0 1

So f(t) = G(t,s) when t > s. This then gives us that f'(t) is a constant function.

Evaluating f' at t and using properi. 3 of determinants we have

yi(t2,t1)  wa2(t2,t1)

vi(t2,t1) ya2(t2,t1)

yi(ts, s) 1 yi(ts, t)
1 0 1

y2(t2,s) 1
1
0
0
v2(t2,8) 1 wm(tz,t1) wa2(tz,t1)
1
0
0
0

Fly=-| 0

0 yi(t2, 1) ya(ta,ty)
0 1 y1(ta, 1)
0 0 1

1 yi(ta, 1) wo(te,ts)
0 1 wi(tz,t1) y2(t2,t1)

vi(ts,s) 0 1 y1(ts, t1)
1 0 0 1
(t2 — s)?

= —ya(t2,8) = o <G.

So f'(t) = G'(t,s) £ 0. Thus G(t,s) is a nonincreasing function on (s,%4). So if
G(t4,s) > 0, then we would have that G(t,s) > 0 for all t in (1;,14).
At this point we ask ourself, which s value in [t2, t3] give us the ‘least positive’

G(ts,s) value? Considering & G(t4,5) as a function in s we have




° .

—y2(te,8) wi1(te,t1) v2(ts,t1) ya(te,ty)

—(-I—G(t4,s)=— 0 1 nt2,th) a(t2,th)
ds -1 0 1 y1(ts, t1)
0 0 0 1
v2(tays) wi(ta,t1) v2(te,t1)
= 0 1 yi(t2, 1)
1 0 1

= y2(ta, ) + {n(ta, 1) (t2,t1) — y2(ta, 1)}

—5)2 — 4.2
_ o) 2!5) + {(t4 —t)(ts — 1) - BB 2!“) }

=R B ) - (-
Since we required that (t; — t1) > (t4 — t2) then we have that ;f—sG(t.t,s) > 0 for
all s € [t2,t3). Thus under this requirement we have that G(14, s) is an increasing
function in s, so G(t4,tF) < G(14, ) for all s € [t,13]. Now we know tflat G(t,s)
is a continuous function in both ¢t and s and so G(t4,tF) = G(is,t57) = G(t4,1t2).
And we proved in the previous case that G(t,s) > 0 for all t € (t;,14), s € (¢1,13).

Thus 0< G(t4,t2) S G(t4,$) for all S € [12, t4] provided that (tz - tl) 2 (t4 — tg).

Summing up, we have shown that if (t; —t;) > (t4 — t2), then G(¢,s) > 0 for

all t in (t;,14], s fixed in [ta,t3].

Our final case is when s is an element of [t3,14).

. Case 3: Fix s € [t3,t4).
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Let t < s and consider G "(t,s) which is

0 0 1 y;(t,tl)
G(t,s) = - 0 1 wyi(tz,t1) w2(t2,t1)
7100 1 yi(ts, t1)
1 0 0 1
0 1 yl(t’tl)

1 wn(tt)
1 wyi(ts,th)

=1 wyi(t2,t1) y2(tz,t1) =—‘
0 1 yl(t:;,t])

=yt t)—nltst1)=({t—t)— (s —t)

= (t b t3)

This gives that G(t,s) is concave don on [t;,13) and concave up on (t3, s]. Since
G(t1,s) = 0 and G'(t1,s) > 0 then all we have to worry about is the sign of G(t, s)
for t € [t3,s]. We know G'(t2,s) = 0 and G'"'(t,s) =t —1;, s0 G'(t,¢) < O on
(t2,t3] and then begins to increase. Now, if g(t) is a third order polynomial, it is
easy to see that if g'(a) = 0 and ¢"(b) = 0, then ¢g'(c) = 0, where ¢ = b-+ (b-a).
Thus, since G(t, s) is a third order polynomial and G'(t2,s) = 0 and G"(¢3,5) =0
we must have that G'(¢o,s) = 0 where t, = t3 + (t3 — t2). {This is easily verified
for G(t,s), although algebraically horrendous.}

Now we know that s < t3 + (t3 — t;) since we required that t4 < t3 + (t3 —t2),
that is (t4 — t3) < (t3 — t2). Thus we have that G(t,s) will be decreasing on
(t2,s]. This gives us that if G(s,s) > 0, then G(t,s) > 0 for all t € (¢;,s]. Again
by continuity of G(t,s) at t = s, we only need to show that G(t,s) > 0 for all

t € [s,t4)-




Let t be in the interval [s,t4] and consider G"'(¢,s) which is

vi(t,s) 0

" 0 1
G"(t,s) =— 0 0
1 0

Y1 (t, S) 1

=—| 0 1

1 0

1
y1(t2,t1)
1
0

yl(t’tl)
y1(ts, 1)
1

yl(tatl)

va2(t2,t1)

yi(ts,t1)
1

= —y1(t,s) = {n1(ts, 1) — v1 (¢, 1)}

=~(t—s)={(ts—t1) = (t — t1)}

=(S—t3)20,

since t3 < s < 4.
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This gives us that G'(t,s) is nondecreasing for t € [s,14). If we could show that

G'(ts,s) < 0 then G(t,s) would be a decreasing function on [s,t4]. Then, if

G(ts,s) > 0 we would have that G(t,s) > 0 for ¢ € [s,t4]. Consider

y2(t4a5) 1

0 1

Gl(t.;,S) = - 0 0
1 0

1

= -y2(t418) + 1

0

y1(ts,t1)
y1(t2,t1)
1
0

y1(ts, 1)
yl(t21tl)
1

y2(ta, t1)

y2(t2,t1)

y1(ta, 1)
1

y2(t47t1)

ya(ta, 1) |-

vi(ts, t1)

Now —ya(t4,s) = {(ta—s)?/2'} < 0so we will only consider the determinant term.

We now define the function h(r), to be the determinant term with ¢; replaced by
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r. So

1 n(ta,r)  ya(te,r)
h(r) = |1 wyi(t2,r) y2(tz2,r)|, which gives
0 1 yi(ts,r)
1 1 yots,r) 1 wi(ts,r) wi(ts,r)
R(r)=—|1 1 wa(ta,r)|=|1 wi(te,7) wi(te,r)
0 0 wyi(ts,1) 0 1 1

=0.

Thus h(r) is a constant. Evaluating h at t4 gives us

1 yl(t4,t4) yz(t4,t4) 1 0 0
h(td) =11 wyi(tz,ts) wya(te,ts) | =|1 wy1(t2,ts) wy2(t2,tq)
0 1 y1(t3,tq) 0 1 v1(ts, te)
= y1(t2, t4)y1(ts, ta) — ya(t2,tq)
ty — t4)?
=(t2—f4)(t3—t4)—(—2‘,,—4)
ty —12)?
= (ty —t2)(ty —13) — %

_ (ty —t2)
2

{(ta —t3) = (ta = t2)} .

Thus we have that h(r) < 0,{and so our determinant is < 0}, provided that
(ta —t3) < (t3 —t2), our earlier constraint! This gives us that G'(t4,5) < 0, so we
have that G(t,s) is decreasing in t on [s, t4] provided that (t4 — t3) < (3 — t;).
Hence if G(t4,5) > 0, then G(¢,s) > 0 for all ¢ in [s,14].

If we consider G(t4,s) as a function of s, then we wish to find the s value
which will give us the ‘least positive’ value of G(t4,s). Taking the derivative with

respect to s gives us




—y2(ts,8) wni(ta,t1) y2(ta,t1) ys3(te,t1)

0 1 ta,t o,
iG(t4,s)=— vi(ta,t1)  y2(t2,t1)
ds 0 0 1 yi(ta, t1)

0 0 0 1

ty — 2
=y2(t4,3)= (4—2"‘i > 0.

Thus G(#4,s) is increasing in s for s in [t3,t4). This gives us that G(t4,t3) <
G(t4,s) for all s € [t3,t4). But from Case 2) and continuity we know that
G(t4,t3) > 0 provided that (t; —t) > (t4 —t2). Hence we have that if (; —t;) >
(t4 —t2) and (t3 —t2) > (t4 — t3) then G(t,s) > 0 for all t € (t1,t4], s € [t3,t4).
Thus, combining all of our cases, we have shown that if we have (t; — t;) >
(ts —t2) and (83 —t2) > (t4 — t3) then G(t,s) > O for all t € (t1,%4), s € (t1,t4).
Since we also showed that G'(¢;,s) > 0 for all s € (t1,t4), we have that when

Ly = y¥) we have that hypothesis (H) holds.
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Chapter 4

Applications to Difference Equations

I) INTRODUCTION

In this chapter we will show how the results from our last chapter will also
hold for an n-th order linear difference equation. Many of the definitions and
notation used will be from Hartman [9], and Hankerson and Peterson [6,7]. In
general, interval notation will specify an interval of integers. So, for example,
[a,b) will mean the set of integers {a,a + 1,a+2,...,b6—2,b—1}.

Let n be an integer greater than or equal to two and k a fixed integer with
1 <k <n—1. We define the n-th order linear difference equation

(1) Ly(t)éia;(t)y(t—k+i)=0, tefa+k,b+k

i=0

where we assume the coefficients a;(t) are defined on [a+k, b+k], fori = 1,2,...,n,

an(t) =1, and ao(t) satisfies
(2) (-1)"a.(t) > 0,

for t € [a+ k.b+ k]. We note that solutions to our differcnce equation (1) are

defined on [a,b + n}.
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Condition (2) implies ao(t) # 0 for all t € [a + k, b+ k], and this guarantees

that solutions to the intital value problem

Ly(t) = h(2)

y(to +1) =y;,0<i<n-1,

for ¢, € [a,b], exist on [a, b+ n], and that (1) has exactly n independent solutions
on [a,b+ n).

We define the difference operator A, by Ay(t) = y(t + 1) — y(t). We can then
recursively define the operators A'y(t) = A(A*1y(t)) for i = 1,2,..., where it
is understood that A%y(t) = y(t). We note that by induction, we can also define
the the ith order difference operator Af, by

8y = Y07 (e +i =)
7=0

Hartman [9] gives us the following definition.

Decfinition: Let y(t) be a solution of (1). We say that y has a generalized zero at

to if either y(t,) = 0 or there exists an integer j, with 1 < j < t, — a such that

(=1)y(te = j)y(to) > 0, and, if j > 1,
y(t) =0, forto — j <t < t,.
II) THE GREEN’S FUNCTION:

Let m > | and dehne the n-th order vector diflerence equation Lu(t) =

Shoai(tu(t ~k+1),t € [a+k,b+ k] where u(t) is an m-column vector such
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that u: [a,b + n] — R™ and the a;'s are as in (1). Also, let P(t) = (pi;(t)),
Q(t) = (qgi;(t)) be discrete m x m matrix functions on [a + k,b + k] and let
a=t <ty < - <tp=b+1.

We consider the n-point right focal eigenvalue problem:

(3) (-1)""'Lu = AP(t)u

Tu=0,

where Tu = 0 denotes the boundary conditions A*~1y(¢;) = 0,7 =1,2,...,n, and
a=1% <t <--- <t, =b+ 1. The Green's function for the scalar difference

boundary value problem

(4) (~1)"'Ly =0

Ty=0

where Ly and Ty are as above, but defined appropriately for the scalar case, has
different properties then its differential equation analog. These properties, given

in Hartman [9], are in the following lemma.

LEMMA 1. Suppose the function G(t,s) has the properties:
i) G(t,s) is defined on [a,b] x [a + k,b + k];
ii) For each fixed s € [a + k,b+ k], LG(t,s) = (=1)""16,, for all t € [a,b + n],
where 6., is the Kronecker-delta function;

iii) For each fixed s € [a+ k,b+ k], A""'G(ti,s) =0,i=1,2,...,n.




o
b+k

Then, for h(t) defined on [a + k,b + k], we have that y(t) = 3,2, ., G(t,s)h(s)

solves

(=1)""'Ly(t) = h(t)

Ty=0.

PROOF: The proof is straight forward. Fort € [a + k,b+ k],

b4k
(-0 ) = (<)L 3 Glta)hcs))
s=a+k
b+k

=(-1)"1 > LG(t,s)h(s)

s=a+k

b+k ’
‘ =(=1)""1 D" (=1)"16,,h(s)

s=a+k

= h(t)

The boundary conditions are satisfied by condition iii) in our definition.

Similiar to differential equations, we now define what it means for a difference
equation to be right disfocal.
Definition: The difference equation Ly = 0 is said to be right disfocal on an
interval [a,b + n}, if there does not exist a nontrivial solution y of Ly = 0 and
pointst; <t < --- <t, € [a,b+1], such that A~y has a generalized zero at t;,
1'5 i<n.

We now introduce some more notation. For each fixed integer s in the interval

‘ [a,b+ 1], let {yo(t,s),11(8,3),...,yn-1(t,s)} be the set of (linearly independent)
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solutions of Ly = 0, where A'y;(t,s)t=s = 6k, 0 < j,k < n — 1. This tells us
that y;(t,s) has j zeros, at s,s +1,...,s+j—1and y;(s +j,s) = 1.

One more final bit of notation. For j =1,2,...,n — 1, define the interval I;

of integers by

._{[t1+k,t2+k—1], for j =1
7T i+ k-4t +k=1], for2<j<n-1

Let Ly = 0 be right disfocal. Then, for each fixed s € I}, t € [a,b+ n], we

define the functions u;(¢), v;(t), for j =1,2,...,n -1, by

0 y1(t,t1) ‘e Yn—1(t 1)
0 Ayi(tz,t1) ... Ayn-a(tz,th)
‘U,J(t)= (-ll))n-l 0 Aj_lyl(ij,tl) o Aj‘ly,...l(t,-,tl)

Alyn_1(tj+1,8) Alyi(tj+1,t1) -0 Alya_i(tjsr,t)

A"y 1 (tayd) AP lyi(ta,ty) oo AP lyaoy(te,th)
where § = s — k 4+ 1 and v;(t) is the same as u;(t) except we replace the zero in
the first row, first column by 3,-1(t,s = k + 1). In the above formula, D is given
by

Ayi(ta, ) Aya(ta,t1) ...  Ayn-a(tz,ty)
A?yi(ts,t1)  Alyy(ts,ty) ... Alyn_i(ts,t))

Ay (tn,t1) A lya(ta,ts) ..o AT lynoa(te, )
The functions u,, vj, j = 1,2,...,n — 1, are well defined provided that D # 0.

As in the last chapter, Ly = 0 being right disfocal guarantees us that D # 0.

To see this, we again suppose that D = 0, and let A = (A'y;(tis1,t1)), for
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1<4,5 £n—1. Then we have that |A| = D, where |A] is the determinant of A.
Since D = 0, that is |A| = 0, we know that there exists a nontrivial column vector
C = (C1,Ca,...,Cn-1)T so that AC = 0. Let z(t) = Ciy1(t,t1) + Coya(t,t1) +
-+« 4 Cn_1yn—1(t,t1). Since z(t) is a linear combination of solutions of Ly = 0,
we have by linearity of L, that Lz = 0. Now z(t;) = 0 since y,;(¢1,t;) = 0 for each
i =1,2,...,n—1. Also, A'z(t;4;) =0 fori = 1,2,...,n — 1, since A'z(t;4;) is
the i:-th row of A times the column vector é, and AC = 0. Thus, Lz = 0 and
Tz = 0 and z is not identically zero since C is nontrivial. This contradicts Ly = 0
is right disfocal. Hence D # 0 and our functions uj, vj, for y = 1,2,...,n -1
are well defined. Now that we have established that D # 0, a standard argument
shows that D > 0.
We note that since L is linear, u;, v; are, for each fixed s, solutions of Ly = 0.

With our functions uj, v; defined, we can now go on to define our function G(t, s).

LEMMA 2. Assume that Ly = 0 is right disfocal on [a,b + n]. For each fixed

s€1;, let

uj(t), fort<s—k+n
vj(t), fort>s—k+n.

(5) G(t.s) = {

Then G(t,s) satisfies the properties i)-iii) of Lemma 1.

PROOF: We need to show that G(,s) satisfies:
i) G(¢,s) is defined on [a,b+ n] x [a + k, b+ k).

ii) For each fixed s € [a + k,b+ k], LG(t,s) = (—1)""16;, for t € [a,b + n].




100
iii) For each fixed s € [a + k,b+ k], A*"1G(¢t;,s) = 0,for i = 1,2,...,n.

To show that G(t,s) satisfies these properties, we first note that from the
definitions of u(t) and v;(t), we have that v;(t)—u;(t) = (=1)" " yn_(¢t,s—k+1).
Then since yp—1(s —k+1+4,s—k+1)=0for:=0,1,...,n — 2, we have that
vj(t) = uj(t) for t € [s—k+1,s— k+n —1]. Thus we can similarly define G(t, s)

as

uj(t), fort<s—k+n

(6) Gt,s) = { vi(t), fort>s—k+1.

It is clear from our definition of u;(t) and v;(t) that G(t,s) satisfies i). To show
ii), let s be a fixed element of [a + k,b+ k], so s € I; for some j. Let t < s. Then
for: =0,1,...,n,wehavet - k+:<t—k+n<s—k+n,soweget from (1)
and (6) that
LG(t,s) =Y pai(t)G(t — k+1,s) = 3" o aiuj(t — k + 1) = Luj(t) = 0, since
u; is a solution of Ly = 0.

Ift > s, thent > s+ 1, so that for: = 0,1,...,n, we have t = k +1 >
s+1—k+12s—k+1,soagain from (1) and (6) we have
LG(t,s) = Yo ai(t)G(t =k +1,58) = S, @i(t)vj(t — k +1) = Lvj(t) = 0, since
v; is a solution of Ly = 0.

We now let t = s. Thensince s—k+i<s—k+nfor:=0,1,...,n -1,

we have from (6) that G(s — k+1,s) = uj(s —k +¢) fori =0,1,...,n =1, and
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G(s —k+n,s)=vj(s —k+n). Then

LG(s,s) = »_ai(s)G(s — k +1,s)
=0
n-—1
= Z a;G(s — k+1,5) + an(s)G(s — k + n,s)
1=0
n-1
= Z ai(s)uj(s —k+1i) +vj(s —k+n), {sincea,=1}

=0

=v_,-(s-k+n)-—u,~(s—k+n)+2aj(s)uj(s—k+i)

=0

= (=1)"typ_1(s —k+n,s —k+ 1)+ Luj(s)
=(=1)" (s =k+1)+(n-1),s =k +1)

- (_l)n—l‘

So LG(s,s) = (=1)""1.

Since s was an arbitrary element of [a + k, b + k] we have that for each fixed
s€la+k,b+ k), LG(t,s) = (=1)""1by,.

Lastly, we need to show that for each fixed s € [a+k, b+ k], A™"1G(ti,s) =0
fori =1,2,...,n. Fix s € [a+k, b+k],so s € I; for some j. Consider G(t1,s). Now
ti+k < s,s0t; < s—k < s—k+n which gives us from (6) that G(t1,s) = u;(t1).
Since yj(t1,t1) = 0 for j = 1,2,...,n — 1, we have that the top row of the
determinant which defines u;, is all zeros and so G(t1,s) = 0.

Now, consider A'~1G(t;,s) wheic t; < tj, i 2 2, where this j is such that

s € I, Forr=0,1,...,i — 1, we have that t; + i -1 -7 < ti+(i—-1) <
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ti+1—-1<s—k+14+j5j-1(sincet;+k—-1<s)<s~k+j<s—k+n,since
j€n-1. 5t +i-1-71<s—k+n,forr=0,1,...,7 — 1. Thus from (6),

G(ti+i—1—-7,s)=uj(ti—1—17). Hence, if welet 5 =s — k + 1 then

Ai_IG(t,‘,s) = Ai-lu]'(t,')

0 Ai_lyl(t,‘,tl) Ai-ly'n_l(ti,tl)
0 Ayl(tivtl) Ayn—l(ti,tl)
- g_lgn—l

A lyn1(tny8) A lyi(tat1) o A" lyai(te,th)

since the first and the i-th row are equal. Thus we have shown that Ai‘lG(t,-,s) =
0for:=1,2,...,7.

Nowlet j <i <nsotj;y <ti. Thenforr=0,1,...,: -1,
titi—1—-72>1¢
2 tin
>s—k+1, sinces<tj;+k—-1.

Thus by (€) we have G(t; +7—1—17,s) = vj(ti +i—1— 7). Hence, if we again

let §=s—-k+1, then

Ai']G(t;,s) = Ai—lvj(t;)

AT ya1(t,3) ATy (ti ) .. Ay, (i, 1)
(—1)"-1 0 Ay](tistl) S Ayn—l(ti»tl)
=0
An—]yn—l(tnyg) An—lyl(tn,tl) An—lyn—l(tn,tl)
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since the first and the i-th row are equal. Thus we have shown that A*~1G(t;,s) =
0 for j < i < n. Combining the last two cases, we have shown that A*~!1G(t,,s) =
0fori=1,2,...,n. Since s was a fixed but arbitrary element of [a + k,b + k],
we have shown that G(t, s) satisfies condition iii) and this completes the proof of

Lemma 2.

It is easy to see that if Ly = 0 is right disfocal, then the function G(¢,s) from
Lemma 2 is unique. For suppose that H(¢, s) satisfies the properties i)-iii). Then
for s a fixed but arbitrary element of {t; + k,, + k], define the function w(t) =
G(t,s) — H(t,s). From property ii), we have that Lw(t) = L(G(t,s) ~ H(t,s)) =
LG(t,s) — LH(t,s) = (=1)""16,, — (=1)""16;, = 0. Also A'w(t) = A'G(¢,s) —
A'H(t,s), so from property iii) we have that A'~lw(t;) = 0 for i = 1,2,...,n.
Thus since Ly = 0 is right disfocal we must have that w(t) = 0 for all t € [a,b+n],
and since s was an arbitrary element of [a+ k, b+ k] we have that G(t,s) = H(t,s)
on [a,b+ n] x [a + k,b+ k]. Hence G(t, s) is unique.

We now define the Green’s function for the boundary value problem (4).
Definition: If Ly = 0 is right disfocal, then the function satisfying the properties
i)-iii) of Lemma 1, is called the Green’s function, G(t,s), for the boundary value
problem (4).

This definition will allow us to summerize the last two lemmas in the following

theorem.

THEOREM 3. If Ly = 0 is right disfocal on [a,b + n], then the boundary value
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problem

(~1)"1Ly = h(t)

ATly(t) =0, fori =1,2,...,n

has a unique solution, y(t), given by
b+k
y(t) = D G(t,s)h(s), t € [a,b+n]
s=a+k

where G(t, s) is the Green’s function for (=1)"~*Ly = 0, A*~1y(t;) = 0,1 <7 < n,

and is given by (6).

We will close this section with the following hypothesis. .

Hypothesis (H): Let the difference equation Ly = 0 be right disfocal on [a, b + n].

We will assume that the Green’s function for (4) satisfies G(t,s) > 0 for t €
(a,b+n], s €la+k,b+k].
This hypothesis is not true in all cases, but we will show sufficient conditions

for (H) to hold for n = 2,3 and 4.

IINEXISTENCE AND COMPARISON THEOREMS

Our results for difference equations are similar to those for differential equa-
tions. We must first introduce a suitable Banach space for our difference equa-
tion, eigenvalue problem (3). Let B = {u : [a + k,b + k] = R™} with norm
[u]| = max(ays4k [u(t)], where |- [ is the Euclidean norm. Following the

ideas from Hankerson and Peterson [6,7], and papers by Tomastik {17,18], we
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let I,J C {1,2,...,m} be such that JUJ = {1,2,...,m} and INJ = 0. (It is
permissible for I = @ or J = 0.) Let K be the ‘quadrant’ cone in R™ defined by
K={z=(z1,22,...,2m)|2zi 20ifi € [,z; <0if i € J}.

Although some of our results will hold for any solid cone in R™, we will just
concern ourselves with K being a ‘quadrant’ cone in R™. Define §; to be the
discrete function §; = 1 if i € I and §; = —1 if 1 € J. We can then equivalently
define the cone X to be KX = {z € R™|§;z; > 0 for : = 1,2,...,m}. With this
notation, the interior of K can be described by K° = {z € R™|6iz; > 0,1 =
1,2,...,m}.

We can now define the reproducing cone P C Bby P = {u € B|u(t) e K,t €
[@ - k,b+ k]} or equivalently by P = {u € B|&u;(t) > 0,7 = 1,2,...,m;t €

[a + k,b+ k]}. The interior of our cone P is now given in the next lemma.

LEMMA 4. Let P be the cone in the Banach space B as defined above. The interior

of P is given by

P°={veBlu(t)eK°te(at+k b+ K]},

or equivalently

P° = {u € B|bui(t) > 0,t € (a+k, b+ k]}.

PROOF: Let Q@ = {u € B|éu(t) > 0,t € (a+ k,b+ k]}. We will show that

Q = P°. First let u € Q. Then bu,(t) > 0 for t € (t;,tn + n). So if we let
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€ = minjci<m {Minga4+1,8+4) [4i(t)|}, then € > 0 since u(t) is a discrete function.
Now, let y € B(u;¢), so |ju —y|] < e. If y € P then we are done, so assume that
y € P. Then, there exists a t, so that y(¢,) ¢ K° for some t, € (a + k,b + k],
which means that §;, yi, (o) < 0 for some i, € {1,2,...,m}. Since |ju — y|| < ¢,

we have that
€ > |u(to) — y(to)|

- (g(ui(to) - y(to))z)

> |ui, (o) — yi, (ti)l-

1
2

So —€ < u;,(to) — yi, (to) < €. First, suppose §;, = 1. Then we have that §; ¢ =
€ > b;,ui, (to) — i, yi, (to) = ui, (to) since 6;, yi, (to) < 0. But this contradicts the
fact that € = min)cicm{min(asrp+iplui(t)]} < Jui, (o) = ui, (ts), since &;, = 1.

So if é;, = 1, we have a contradiction. Now suppose that §;, = —1. From
above we have that &;, (—€) > 6;,ui, (to) — 6i, ¥i,(to) > 6i € and from this we get
that € > é;, u;, (¢, ) since ~&;,yi, (to) > 0. But again this contradicts the minimal-
ity of e. Hence &;, is not equal to either 1 or —1 which again is a contradiction,
which means that our original assumption that there exists a t, and a 7, so that
i, i, (to) < 0 is false. Thus y € P and since y was arbitrary, we have that
B(u;e) C P and so u € P°. So we have shown that Q@ C P°.

Now let u € P° and we will show that u € Q. Suppose u ¢ Q, so that there
exists a to € [a + k,b+ k] and an i, € {1,2,...,m} so that &, u; (t,) = 0, so

ui, (to) = 0, (clearly if é;,ui,(tc) < 0 then u ¢ P which contradicts u € P°).
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Since u € P°, there exists an € so that B(u;e) C P. Let y(t) be such that
y(t) = u(t) if t # t, and when t = t,, let y;(to) = ui(to) for ¢ # i, and finally, let
8, yi, (to) = —%. This gives us
{ |ui(t) — yi(t)1}

llu -yl =

max max
1<i<m t€(a+k,b+kj

= lglgxmﬂu;(t.',) - yi(ti,)l

= fug, (ti,) — i, (i)

= -%, since u;,(t,) =0
Hence ||lu—y|| = £ < € so we have that y € B(u;e) C P. But é;,yi,(t.) = —5 <0
so y ¢ P which is a contradiction. So we must have that 6;u;(t) > 0 for all
1<i<mandte€ (a+kb+ k] that is u € Q. Thus since we have shown that

Q C P° and P° C Q we have that P° = Q and our lemma is proved.

We now state our first existence result for our boundary value problem (3).

THEOREM 5. Assume hypothesis (H) holds, 6;6;pij(t) > 0, for t € [a + k,b+ k],
1 <i,; < m and that thereis at, € [a+k,b+k) and an i, such that p;,;,(t.) > 0.
Then for the eigenvalue problem (3), there exists an eigenvector z, € P with
corresponding positive eigenvalue \, which is a lower bound for the modulus of
any other eigenvalue for this eigenvalue problem. Furthermore, 6;z(t); 2 0, for all

t€a,b+n],i=12,...,m, that is z(t) € K for all t € [a,b+ n].
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PRrROOF: We define the linear operator M : B ~B by

b+k
Mu(t)= ) G(t,s)P(s)u(s), fort€la+k,b+ k],

s=a+k

where G(t,s) is the Green’s function for (4). We note that the eigenvalues of
boundary value problem (1) are reciprocals of the operator M, and that zero is
not an eigenvalue of (3) since Ly = 0 is right disfocal. We also note that since
G(t,s) is defined for all t € [a,b + n], we have that Mu(t) is well defined on
[a,b+ n].

We will now show that our compact operator M, is a positive operator, that
is, M : P — P. Let u be an arbitrary element of P. If we can show that
§:(Mu(t)); > 0 for all ¢ € [ty,tn + 7], i = 1,2,...,m, where (Mu(t)); denotes
the i-th component of Mu(t), then Mu € P. Consider the i-th component of
P(tyu(t), (P(t)u(t))i = 371, pij(t)u;(t). Now §;6; = 1 and §;u;(t) > 0 so we
have that for all ¢ € [a+k,b+ k], 8:(P(t)u(t))i = 301, 6:i6;pij(t)65u;(t) .Z 0, since
6;6;pi;j(t) > 0 by hypothesis. From hypothesis (H), we have that G(¢,s) > 0 on
{a,b+n]x [a+k,b+k]. Thus &(Mu)i(t) = S0kh , G(t,5) ST, 6i;pij ()E5u5(t) >
0,forallt € [a,b+n],i=1,2,...,m. Thus Mu € P, and since u was an arbitrary
element of P, we have that M is a positive operator.

In order to apply Theorem 1.6, of Chapter 1, we must find a nontrivial u, €
P, and an €, > 0 so that Muo, > €ouo. Let uo(t) = §; ¢€i,, where ¢;, is the

unit vector in R™ in the ¢, direction. This gives us that the jth component of

(uo(t))j = éi,6i,;, where §;; is the Kronecker delta function. Thus é;(u.(t)); =
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{6;6i,}6i.; =2 0, so uo € 7. We note that é;, (uo(t));, =1 > 0, 0n [a+k,b+ A
and that é;(u.(t)); = 0 for all other ;.
We now consider Mu,(t). Since M : P — P, we know that 6;(Mu,);(t) >
0 =6j(uo(t)); for 1 £ j <m, j #ie. When j =i, we have that
b+k

Sie(Muo)i, () = D G(t,8) ) 8, 6;pi,i(5)8i(uo(s));

s=a+k =1
b+k

= 3 Gt )i biupiaia ()60 (ua(2))

s=a+k
b+k

= 3 Gtslpiis)

s=a+k

>0, forte€la+k,b+Ek],

since by hypothesis (H), G(¢,s) > 0 for all t € (a,b+n), s € [a+ k,b+ k] and
Pisi.(to) > 0 for to € [a + k,b+ k). So we have that §;, (Mu,),(t) > 0 for all
t € [a+ k,b+ k], and since §;,(Mu,);, () is a discrete function, we have that
€o = Minjg4t b4k {6(Mus);, (t)} > 0. Hence we have that 6;, (Mu.);, () > €, =
€o(6i, (uo(t))i,) for t € [a + k,b+ k], since §io(ur(t))i, = 1. This gives us that
Mu, 2 €ouo with respect to the cone P. By applying Theorem 1.6 of Chapter
1, we have that there exists an eigenvector z, € P with corresponding positive
eigenvalue A, which is an upper bound for the modulus of any other eigenvalue
for this eigenvalue problem. Since the eige'nvalues of M are reciprocals of the
eigenvalues of (3), our results follow.

We now show the final conclusions of this theorem, that is, if (Ao, 2,) are
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the eigenpair from above, then z,(t) € K for all t € [a,b + n]. We know that

Mzo(t) = Aozo(t) or zo(t) = (1/X6)Mz,(t) since Ao > 0. Thus,

bi(zo(2))i = 6i(1/X0)(Mzo(2))i

p bk m
=+ Y Gt,s))_ 6i6;pij(s)65(ze(s));
° s=a+k Jj=1

20, fortela,b+n),

since G(t,s) > 0 for all t € [a,b+ n], s € [a + k,b + k] and by hypothesis
8;6;pi;(t) 2 0,fort € {a+k,b+k],1 < 1,5 < mand §i(z.(t))i > 0 since z(t) € P.
Hence we have that §;z(t); > 0, for all t € [a,b+ n], ¢ = 1,2,...,m, that is

2(t) e K for all t € [a,b + n].

If we have stronger conditions on P(t), then we get better results.

THEOREM 6. Assume hypothesis (H) holds, 6;6;pij(t) > 0, 1 < i,j < m, for
allt € [a+ k,b+ k]. Then for the eigenvalue (3), there exists an éssential]y
unique eigenvector z, in P°, and its corresponding eigenvalue is simple, positive
and smaller then the modulus of any other eigenvalue for this eigenvalue problem.
Furthermore, 6;2(t); > 0, for all t € (a,b+ n), i = 1,2,...,m, that is 2(t) € K°

for allt € (a,b +n).

PROOF: As in the last proof we define the compact linear operator M by Mu(t) =
:::+k G(t,s)P(s)u(s), t; <t < t,+n. We wish to show that M is a u,-positive

operator so that we can apply Theorems 1.8 1.9 of Chapter 1. To show that M

is uo-positive, we will show that M : P\{0} — P°, and then apply Lemma 1.5 of
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Chapter 1.

Let u be an arbitrary element of P\{0}. Then, there exists an
io € {1,2,...,m} and a t, € [a + k,b + k] so that §; u; (to) > 0. By hypothesis,
for eachi =1,2,...,m, 6;6;, pii,(t) > 0 on [a + k, b+ k). This gives us that
8:6:.pii, (1)6;,ui,(te) > O for all t € [a+ k,b+ k], i = 1,2,...,m. Then, by
hypothesis (H) G(t,s) > 0 for all t € (a,b+n], s € [a + k,b+ k], we have that for
eachi=1,2,...,m

b+k

S(Mu)(t)= > G(t,9)86: > pis(s)u;(s)

s=a+k 1=1
b+k

= Z G(t,s)25i5jpij(s)5juj(3)

s=a+k j=1

b+k

> > G(t,5)8i6i, pii (5)8i, ui, (5)
s=a+k

>0, forte(a,b+n]

Thus we have that 6;(Mu(t)); > 0 for all t € (a,b + n]. But this give us that
Mu(t) € K° for all t € (a,b + n]. In particular we have that Mu(t) € K° for all
t € [a+ k,b+ k], and so by Theorem 4 of this chapter we have that Mu € P°.
Since u was an arbitrary, nontrivial element of P we have that M : P\{0} — P°,
so by Lemma 1.5 of Chapter 1 we have that M is a u.-positive operator. Hence
we now apply Theorems 1.8 and 1.9 of Chapter 1, to get that M has an essentially
unique eigenvector z, in P°, and its corresponding eigenvalue is simple, positive

and greater then the modulus of any other eigenvalue for this eigenvalue problem.
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Since the eigenvalues of M are reciprocals of the eigenvalues of (3) we have our
desired results.

Furthermore, from above we have that for any nontrivial u € P, 6;(Mu(t)); >

0, for all t € (a,b+n], i =1,2,...,m, that is Mu(t) € K° for all t € (a,b+n].

Hence if (Ao, 2z, ) are the eigenpair for above, we have that z,(¢) = (1/X.)Mz.(t) €

K° since A, > 0 and our theorem is proven.

We also have comparison results between two focal point difference equation

eigenvalue problems.

THEOREM 7. Let hypothesis (H) hold for the eigenvalue problems (1) and (3).
Also, assume that the matrix functions P(t) and Q(t) have the properties:
a) Thereis ani, € {1,2,...,m} and at, € [a+k,b+ k] such that p;,;,(ts) > 0;
b) 0 < 6:6;pij(t) < 6:6;qii(t), fort € [a+ k,b+ k], 1 <d,j <m;
c) qij(t) >0, fort € [a+k,b+k],1<i,j <m.

Then there exists smallest positive eigenvalues Ao, Ao of (1) and (3) respec-
tively, both of which are positive, A, a lower bound in modulus and A, strictly
less in modulus then any other eigenvalue for their corresponding problems. If z,
is the eigenvector corresponding to )., then zo € P and in addition, z.(t) € K
for all t € [a,b+ n]. Further, A, is a simple eigenvalue and its corresponding

eigenvector, v, belongs to P° and in fact, vo(t) € K for all t € (a,b + n].

Moreover, Ao < Ao and if Ao = Ao, then P(t) = Q(t) on [a + k,b + k].
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PROOF: We define the integral operators M, N : B — B by

b+k b4k
Mu(t)= Y G(t,5)P(s)u(s)  and  Nu(t) = Y Gt )Q(s)u(s),
s=a+k s=a+k

where G(t,s) is the Green’s function for (4). We know by earlier proofs that
M,N : P — P. Now, by Theorem 5, M possesses a positive eigenvalue 1/,
which is an' upper bound, in modulus, for all other eigenvalues of M, and its
corresponding eigenvector z, belongs to P, and in addition, z.(t) € K for all
t € [a,b+ n]. By Theorem 6, we have that N has a positive, simple eigenvalue
1/A., which is strictly greater, in modulus, than all other eigenvalues of N, and
its essentially unique eigenvector v, belongs to P°, and in fagt, vo(t) € K for all
t € (a,b+n).

We will now show that M < N with respect to P. Let u be an arbitrary
element in P. Then for each fixed i € {1,2,...,m}, we have 6:6;(gij(t)—pi(t)) 20
fort € [a+k,b+k], 1<) <m. Also, since u € P, we know that §;(u(t)); > 0 for
allt € [a+ k,b+ k), 1 < j < m. These last two items and the fact that 6;6;, =1

gives us that for j = 1,2,...,m,

D 8i(gii(2) = pis () (u(®)); 2 0

for t € [a + k,b+ k]. Now hypothesis (H) tells us that G(t,s) > 0 on [a,b + n] x
[a + k,b+ k), and thus
b+ k m

8 D Glt,s) > (qij(t) — pij(t))(u(t)); > 0.

s=a+k i=1
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Since ¢ was arbitrary, then each component of Zt:ﬁ_,_k G(t,s)(Qi;(t) — Pij(t))u(t)
times 6; is nonnegative for all ¢t € [a + k,b + k]. Thus §; Zﬁ:j+k G(t,s)(Qi;(t) -
Pi;(t))u(t) = (N — M)u(t) € K for all t € [|. Thus Nu > Mu with respect to the
cone P. Since u was an arbitrary element of P, we have that M < N.

Now (Tl:, 2,) and (A’—., v,) are eigenpairs of M and N respectively, so we have
that the inequalities of Theorem 1.11, Chapter 1, hold. Also, similiar to the proof
in Theorem 6, we have that N is u.-positive. From above we see that M < N,
and so we can apply Theorem 1.11, Chapter 1 to give us that ’\’—a < K]T or Ao < A,.

Finally, suppose that Ao = A, = A, then Theorem 1.11, Chapter 1 tells us that
2o = kv, for some nonzero scalar k. Then AP(t)zo = Lz, = kLv, = kAQ(t)ve =

AQ(t)zo. Thus AP(t)zo = AQ(t)zo so (Q(t) — P(t))zo = 0 since A # 0. So, for

each i-th component of (Q(t) — P(t))zo = 0,
il(qij(t) — pij(t)(20(t)); =0, fort€[a+k,b+k].
=
Hence
f;[éi&j(mj(t) = pij(t))6;(z0(2)); =0, forte[a+k,b+ k],
i=

and since z, € P° we have that §;z,(¢) > 0 for all t € [a + k, b+ k]. This, plus the

fact that 6;6;¢;(t) > 6ié;pij(t) for t € [a+ k,b+ k], 1 < 1,7 < m, gives us that
pij(t) = qij(t), forallt€fa+k,b+k], 1<i,j<m.

Thus we have that P(t) = Q(t) on the interval [a + k,b + k).
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V) EXAMPLES

In our final section, we will give examples for which hypothesis (H) holds.

Example n=2:

In this example we have k = 1, and Lu(t) = u(t+2)+pa(t)u(t+1)+p2(t)u(?).
Let t; = a and t; = b+ 1 be elements of any interval [a, b] over which L is right
disfocal. Then, from Theorem 3, our Green’s function for (4) is, for t € [t1,12 + 1],

S € [tl + 1,t2]

0 vt t1)
- t<s+1
Gt.o INACEN) lAyl(tzas) Ayi(tz,ty) ’
78 =
B wit,s)  wn(tt) s<t
Ayi(tz,t1) B

Ayi(tz,s) Ayi(tz,ty)

To show that hypothesis (H) holds for this example, we will need a difference

equation analog of Rolle’s Theorem, which is provided by Hartman [9].

PROPOSITION. Suppose that y(t) has N generalized zeros on [a, b} and that Ay(t)

has M generalized zeros on {a,b—1). Then M > N — 1.

Now consider y;(t,s) for any t € [t;,t2 + 1], s € [t1 + 1,2]. We know that
y1(s,8) = 0 and y1(¢,s) # 0 for all t # s or else by the preceding proposition we
contradict Ly = 0 is right disfocal. Thus since Ay;(s,s) = 1, we know y;(t,s) <0
for all t < s and y;(¢,s) > 0 for all t > s. We also know that Ay (t,s) # 0 for all
t > s or else we again have a contradiction. Thus we have that Ay, (t,s) > 0 for

allt > s.
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Then, when t < s + 1 we have that

-1
m{—Ayl(tg,S)yl(t’tl)}

_ Ayt ) (th)
Ay (tz, t1)

G(t,s) =

So G(t,s) > 0on [t;,s + 1) and positive when t; <t < s+ 1.

Now suppose that t > s. Then

{v1(t,5)Ayi(t2,t1) = Ayi(t2, s)yr (¢, t1)}

Gt s) = Ayi(t2,ty)
_ BAulty, )y (t, 1) — ity s)Aui(ta, )
Ayi(ta,ty)

From the previous case we know that G(s,s) > 0. Suppose we define z(t) to
be z(t) = Ayi(t2,8)y1(t,t1) — y1(t, s)Ayi(t2,t1). Then z(s) > 0 and Az(t;) = 0.
Then since z(t) is a solution of Ly = 0, we must have that z(t) > 0 for t € [s,1,].
Further, Az(t3) = z(t; + 1) — z(t2) = 0 and so 2(t; + 1) > 0.

Thus G(t,s) > 0 for t € (t1,t2 + 1], s € [t; + 1,12] and hence we have that
when n = 2, hypothesis (H) holds over any interval on which Ly = 0 is right

disfocal.

In our next two examples we will take L to be Ly = A™y. We note here that
when Ly = A"y, then Ly = 0 is right disfocal over any interval I.
We will now need what is known as the factoral function. This function, t(¥)

is defined as follows:

a) if k=1,2,3,..., then t®) = ¢(t = 1)(t -~ 2)...(t = k+1);




117

b) if k = 0, then ¢(®) = 1;

i k= -9 _ k) — 1 )
¢) ifk=-1,-2,-3,..., then t(® = SIS TETL
d) if k is not an integer, then t(¥) = I‘_E%’ where I'(t) is the gamma function.

It is understood that the definition of t(¥) is given only for those values of t

and k which make the formula meaningful. We note that for k a positive integer,

we have that

AR = (£ + 1)®) 40
=+ 1)tk gt -1)...(t—k+1)
= (t+ 1)1 — gDt _ k4 1)

= k=),

So At®) = Et(k=1) " This property and induction gives us, for j an integer, if
j < k, then ATt = k(k —1)...(k —j 4+ 1)t*=9; if j = k then A%t = !,
and if j > k then AJ#¥) = (. Let s be a fixed element of [t; + k,t, + k] and
define yi(t,s) = (t — )*)/k!, for each k = 1,2,...,n — 1. Then y; is a solution
to the intitial value problem Ly = 0, AJyx = §;x, 0 < j < n — 1. With this in
mind, we will take our set of n linearly independent solutions to Ly = 0 to be
{3, 51(,8),...,yn=1(t,8)}.

This will simplify our Green'’s function considerably, since by the properties
of the factoral function we have that Aly; = Yk—j, for j < k and Aty = 0 for

7 > k. Further, this gives us, like in Chapter 3, that D = 1.
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Example n = 3:

When n = 3 our difference equation is (=1)""'Ly = 0 Ly = A’y with
boundary conditions y(t1) = Ay(t2) = A%y(t3) = 0, wherea = t; < t; < t3 =
b+1. We will show, that Hypothesis (H) holds under the condition that (¢ —¢;) >
(t3 —t2). It is not too difficult to show that if (22 —t;) < (¢3 — t2), then hypothesis

(H) does not hold.

From Lemma 2 we have that for this equation, our Green’s function for ¢t €

[tl,t3 + 2], iS

( for s € [ty + k,t2 + k — 1]
0 it t1)  ya(t,ta)
n(t2,s —k+1) 1 ni(ta,t1)| t<s—k+3,
1 0 1
y2(tvs—k+1) yl(t,tl) y2(t7t1)
yl(tg,s—k-f-l) 1 yl(tg,tl) S—k+1 St,
1 0 1
G(t,s) = ¢
(t,5) fors€fty +k—1,t3 + k —1]
0 wn(t,th) wat,th)
0 1 yl(tg,tl) t<8—k+3,
1 0 1
va(t,s—k+1) w(tt) w(tt)
0 1 yl(tg,tl) s—k+1<t.
\ 1 0 1

For Hypothesis (H) we need to show that G(t,s) > 0 for t € (t;,t3 +2], s €

[t1 + k.t3 + k — 1). We will first show that AG(ty,s) > Ofor s € [t + k,t3 + k—1].
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First, let s € {t; + k,t; + k — 1]. Then we have

0 Ayi(ti,t1) Aya(ty,t1)
AG(ty,s) = |yi(tz,s — k+1) 1 y1(tz,t1)
1 0 1
0 1 0
= |y(ta,s —k+1) 1 yi(t2,ty)
1 0 1
ta,s—k+1 tq,t
=- nlt 1 ) yl(: ) =y (t2,t1) —ni(t2,s —k+1)

=(t2~—t1)—(t2—(8—k+1))=3—k+1"'t1

2t+k)-k+1-t,=1>0.

If we have that s € [to + k — 1,¢3 + k — 1], then

0 Ayl(tl,tl) Ayz(tl,tl) 01 0
AG(t1,3)= 0 1 yl(tg,tl) =0 1 yl(tg,tl)
1 0 1 1 0 1
1 0
= = tr,t1) =(ta —t;) > 0.
1wt th) vi(ta,t1) = (t2 — t1)

Thus for s € [ty + k,t3 + k — 1] we have that AG(t;,s) > 0.

We will now show why the condition (t; —t;) > (t3 -- t2) will insure us that
G(t,s) > 0fort € (t),t3+2], s € [ty + k,t3+ k —1]. We have two cases to consider,
whens € [ty + k,ta+k~1]ands€ [to + k= 1,83+ k —1].

Case 1) Fix s € [t; + k,to + k - 1].

Ift € (1,5 — k + 3) then we have G(t1,s) = 0, AG(t1,s) > 0 and

0 0 1
AQG(t,s)= ni(tz,s —k+1) 1 yi(ta,ty)|=-1.
1 0 1




120
So A?G(t,s) < 0 and hence AG(t,s) is a decreasing function on (t;,s — k + 3).
But G(t1,s) = 0 and AG(t1,s) > 0. Thus, if G(s,s) > 0, then G(t,s) > 0 for all
t € (t1,8s—k+3). Now, if we can show that G(¢,s) > Oforallt € [s—k+1,t3+2]
then we will have that G(t,s) > 0 for all t € (t1,t3+3], s fixed in [t + k,t2+k~1].
Let t € [s — k + 1,t3 + 2] and define f(t) on [t;,t3 + 2] by
y2(t,s —k+1) wn(t,t)) vt ts)

f@®) =lwn(tz,s—k+1) 1 ni(tz,t1) |-
1 0 1

Now f(t) = G(t,s) for t € {s — k + 1,3 + 2]. Thus, f(t) is a solution to our
differential equation Ly = 0 and satisfies the boundary conditions A f(¢z) = 0 and
A?f(t3) = 0. Since A3f(t) = 0, A%f(¢) is equal to a constant. But A?f(t3) =0
so A%f(t) = 0 and so Af(t) is equal to a constant. But Af(t2) = 0 so Af(t) =0.

Thus f(t) is equal to a constant on [t;,t3 + 2]. Evaluating f(t) at ¢; gives us

yo(ti,s —k+1) yi(t,t1) y2(ti,t1)
ft)=|ni(ts,s —k+1) 1 y1(t2,11)
1 0 1

y?(f]ss_k+1) 0 0
=yt s —k+1) 1 yi(tz,t1)| =v2(t1,s —k+1).
1 0 1

So f(t) = yo(t1,s—k+1) = (1 —(s—k+1))P /2! = Lty —s+k—-1)(t1 —s+k-2).
Now (t; —s+k—2) < (t; —s+k-1) < (t; —(t1+k—1)+k—1) = 0, since s > ¢, +k-1.
Thus (t; —s+k—2) < (ti —s+k~1) <0so f(t1) = y2(t1,s =k +1) > 0. Thus
G(t,s) >0fort € [s—k+1,t3+2] when s € [t; + k,t2 + k —1]. So we have that

when s € [t; + k,t2 + k — 1), G(t,s) > 0 for all t € (t1,t3 +2].
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Case2) Fixs€[to+k—1,ta +k —1].
When ¢t < s — k + 3, we have that G(t;,s) = 0, AG(t;,s) > 0, and, like in
Case i, A%G(t,s) = —1. So, like before, we only need to consider G(t,s) when
te[s—k+1,t3+2).

Let t € [s — k + 1,¢3 + 2] and define

yat,s—k+1) wni(t,t1) w2t t1)
f(t) = 0 1 yl(t27tl)
1 0 1

for t € [t;,t3 + 3). So f(t) = G(¢,s) when t € [s — k + 1,t3 + 3]. Again we know
that A%f(t) = 0 and that A?f(t3) = 0. Thus Af(t) is a constant. Evaluating

Af(t) at s — k+ 1 we have

nis—k+1,s—k+1) 1 y(s—k+1,4;)
Af(.s—k+1)= 0 1 yl(t2,tl)
1 0 1

0 1 w(s—k+1,4)
= 0 1 yl(t2’t1)
1 0 1

= yl(t2,tl) - yl(s - k + lytl)

=(2-t)-({(s-k+1)-t;)

=tg—s+k-1<ty—(t2+k-1)+k-1=0.

Thus Af(t) < 0 so f(¢) is non-increasing on [t;,t3 + 2]. So if f(t3 +2) > 0 then

we would have what we want, 0 < f(t) = G(t,s) for t € [s — k + 1,t3 + 2]. If we




expand f(t3 + 2) along the first column, we get

ya(ts +2,s —k+1) yi(ts +2,41) ya(ts +2,4)

fta+2) = 0 1 yn(t2, 1)
1 0 1
yi{ts +2,t1)  y2(ts +2,t1)|

= t3+2,s—k+1 +| .
va(ta ) 1 y1(t2, 1)

=yo(ts + 2,8 — b+ 1)+ {y1(ts + 2, t1 )1 (t2, 1) — y2(ts + 2,t1)}

o @ — 1)@

_ (a2 (2! Lo +{(t3+2—t1)(t2‘t1)_(t3+22! = }

= (ts +1—2!s+k)(2) + {(ts +2—t))(t2 —t;) — (ts +2-t1.)‘?,(!t3 +1—t1)}
_ (t3+1-2!s+k)(2) N (t3 +22!_t1){(t2—tl)—(ta-tz)—l}'

Consider the first quantity, 2(t3+1—s+k)® = 1(t3 +1—s+k)(ts —s+ k). Now
s<tsy+k—-landso(tz+1—-s+k)>(ts—s+k)2(ts—(ts+k-1)+k)=1
This gives us that 3(ts +2— (s —k + 1) > 0.

Since the first quantity is greater than zero, we only need to have the second
quantity greater than or equal to zero. That is, we need 7(ts +2—t1){(t2 —t1) —
(t3 — t2) ~ 1} > 0. This will occur if {(tz — t1) — (t3 — t2) — 1} > 0, that is, if
(t2 — t1) 2 (t3 — t2) + 1. Thus, since (t2 —t1) > (t3 — t2), we have that f(¢) >0
and so G(t,s) >0forallt € (t),t3+2]ands€ [t + k- 1,83 +k— 1].

Hence, combining the two cases, we have that for the boundary value problem,

A3y(t—k) = 0 and Ty = 0, hypothesis (H) holds provided that (tz —t1) > (t3 —t2).
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Example n = 4:

In our final example of this chapter, we will take our difference equation to be
(=1)""1Ly(t) = —A*y(t — k) = 0, with boundary conditions A*~!y(t;) = 0, for
t = 1,2,3 and 4. We will show that Hypothesis (H) holds, under the conditions
(t2 —t1) > (t4 — t2) + 1 and (t3 — t2) > (t4 — t3) + 1. For our difference equation
when n = 4 we have from Lemma 2 that the Green’s function for ¢t € [t;,t4 + 3],

1s




0

'fOISE[t1+IC,t2+k—1]

ui(t,ty)  w2(t ty)  wa(t,th)

2ty s —k +1) 1 vi(t2,t1) w2(tz, 1)
yi1(ts,s — k+1) 0 1 vi1(ts, t1)
1 0 0 1
ys(t,s—k+1) wi(t,t1) w2(t,t1)  wa(t,ty)
_ yz(tg,s—k-}—l) 1 yl(tz,tl) yg(tg,tl)
y(ts,s—k+1) 0 1 yi(ts, t1)
1 0 0 1
forseto+k—-1,t3 +k—1]
0 ni(t,t1) v2(t,t1)  ya(t )
_ 0 1 vi(t2,t1) y2(t2, 1)
yi(ts,s —k+1) 0 1 v1(ts,t1)
G(t,s) = 4 1 0 0 1
v(t,s—k+1) wnt) wth) y(t)
N 0 1 vi(t2,t1)  y2(t2,t1)
n(ts,s—k+1) 0 1 y1(ta,t1)
1 0 0 1
forsefts+k—-1,t4 +k-1]
0 wm(t,t1) w(tt) y(tt)
_ |0 1 ni(t2, 1) ya(tz,th)
0 0 1 v1(ts,t1)
1 C 0 1
y3(t,s = k+1) wi(t,t1) w(t,t1)  ys(t,t1)
_ 0 1 yi(tz2,t1)  y2(t2,t1)
0 0 1 v1(ts, t1)
L 1 0 0 1
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t<s—-k+4

s—k+1<t

t<s—k+4

s—k+1<t

t<s—k+4

s—k+1<1t.

We will first show that AG(t;,s) > 0 for all s € (¢; + k,t4 + k£ —1). In all

cases, consider the first row of AG(t,, s),

Aﬁ.l(tl) = (0,Ayi(t1,t1),Dy2(t1,t1), Aya(t1, 1)) = (0,1,0,0). If we expand




AG(t,,s) along the first row, we have

{ for s € [t1 + k,t2 + k — 1]

va(tz,s —k+1) yi(t2,ts) ya(t2, ta)
vi(ta,s —k+1) 1 v(ts, t1) |,
1 0 1
forsefta+k—1,t3+k—1]
AG(t,9) = { 0 yi(t2,t1)  v2(t2,ta)
n(ts,s—k+1) 1 yi(ts, t1) |,
1 0 1

forse [tz +k—-1,t4+k—1)
0 wi(t2,t1) wa2(tz,ty)

0 1 y1(ts,t1) |-

1 0 1

\

If we consider AG(t;,s) as a function of s, we can define functions h;(s) on

[ti+k-1,t4+k—1]fori=1,2,3 to be

y2(t2,s —k+1) yi(t2,t1) y2(t2,t1)
h;(s): y](t3,s—k+1) 1 yl(t:;,tl) fortj +k—-1<s<ty+k-1
1 0 1
0 y1(t2,t1) y2(t2,ty)
h2(5)= y](t3,8—k+1) 1 yl(t;;,tl) fort1+k-1§s$t4+k—1
1 0 1
0 wi(tz,t1) w2(t2,t1)
hs(s)=|0 1 ni(ts,t1)| for tH1+k-1<s<ty+k-1.
1 0 1

Then hi(s) = AG(t,,s) when s € I;, for i = 1,2,3. By defining the k;’s in this
manner we have that hy(t2 + k — 1) = ho(t2 + k — 1) and ha(t3 + k — 1) = h3(s),
since hj is a constant function. We will need to take the difference, with respect
to s, of these functions and will denote this operator by A,. We note without

proof that AJyi(t,s) = (—1)yk—j(t,s) if k > j and zero otherwise.
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Now h)(t;+k~1) = O since, in this determinant, the first and last columns are
vniltz,s —k+1) yi(t2,t1) vy2(t2,t1)

equal. Also, we have that A h(s) = — 1 1 n(ts, t1) |,

0 0 1
so that A hy(t1 + k — 1) = 0 since, in this case, the first and second columns are

1wtz th) wa(tz )
equal. Finally, A%2h;(s) = |0 1 y1(ts,t1) | = 1. The last equation gives
us that A,h; is increasing 0(:1 [t +0k - 1,14 +1k —2]. Now A,hi(ti +k-1)=0
so A,hy > 0 on [ty + k,t4 + k — 2]. So h; in increasing on this interval and
hi(t1 + k — 1) = 0. Thus we have shown, in particular, that hy(s) > 0 for all s in
[t1 + k,t2 + k—1].
0 wi(te,t1) ya(te,t1)

Now A,ha(s) = — |1 1 vi(ts, 1) | = va(t2,t1) = (¢.2 — ;) > 0. So

h, is an increasing functioon wit}? ha(t2 + kl— 1)=hi(t2+ k—1) > 0. Thus hy is

positive on [tz + k — 1,t3 + k — 1].

Finally, h3 is constant and h3(s) = h2(t3 + k — 1) > 0. So h; is positive on
[ts + k — 1,t4 + k — 1]. Putting this all together we have that AG(t;,s) > 0 for

all sin [t; + bty +k-1).

We will now show why the conditions (t2 —¢;) > (t4 —t2) + 1 and (t3 — ¢;) >
(t4 — t3) + 1 insure us that G(t,s) > 0 for t € (t;,84 + 3], s € (t1 + k,t4 + k = 1).

We have three cases to consider.

Case1: Fix s € [ty + k,t2 + k ~ 1]
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Fort; <t<s—k+1<s—k+4, we have that

0 0 1 yl(t,tl)
ta, -k+1 1 tg,t tg,1
AG(t,s) = — y2(t2,s -k +1) vi(t2,t1)  y2(t2,t1)
ni(ts,s—k+1) 0 1 v1(ts, 1)
1 0 0 1
0 1 yl(t,tl)
= - yl(t3,s-—k+1) 1 yl(t3,t1)
1 0 1

=pi(ts,s —k+1) — {yi(ta, t1) — v1(t, 1)}
=(t3—(s—k+1))-—(t3 —t1)+(t—t1)
=t—(s—k+1)<0 sincet<s—k+1.

So A*G(t,s) <0 on (t;,s — k +1], and hence AG(t, s) is a decreasing function on
(t1,5—k+1]. Now G(t;,s) = 0 and we have previously shown that AG(t;,s) > 0.
Thus if G(s — k+1,s) > 0, then G(t,s) > 0 for all ¢ in (t;,s — k+ 1]. So we now
consider G(t,s) for t € [s — k + 1,¢4 + 3] and will show that it is positive.

Now, for fixed s, G(t,s) is a solution of Ly = 0 so A*G(t,s) = 0. Thus
A%G(t,s) is a constant. But A3G(ts,s) = 0 since G(t,s) satisfies the boundary
conditions. So A*G(t,s) =0 and so A2G(¢,s) is a constant. Now A2G(t3,5) = 0
and so A?G(t,s) = 0. This gives us that AG(t, s) is a constant. But AG(t,s) =0
so AG(t,s) = 0. Thus G(2,s) is a constant on [s — k + 1,14 + 3].

Now, define f(t) on [t;,t4 + 3] by

ya(t,s—k+1) wi(tth) wa(t,ts) ys(tta)

y2(t2,s — k +1) 1 ni(t2,t1) y2(t2,01)

ni(ts,s—k+1) 0 1 vi(ts,t1) |
1 0 0 1

ft) = -
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So we have that f(t) = G(t,s) when t € [s — k + 1,t4 + 4]. Evaluating f at ¢,

gives us

vati,s—k+1) wni(ti, 1) y2(ta,ty) ya(ti,t1)

flt) = — yo(t2,s — k+1) 1 yi(tz2,t1)  y2(t2,t1)
yi(ts,s —k+1) 0 1 v1(ts,t1)
1 0 0 1
ya(ti,s—k+1) 0 0 0

va(ta,s —k+1) 1 wi(t2,t1) y2(t2,t1)
vi(ts,s—k+1) 0 1 vi(ts,t1)
1 0 0 1
(ty = (s =k +1))©
3!

= —y3(ti,s —k+1)=—

1
=—§(t1—s+k—-1)(t1—s+k—2)(t1—s+k—3).

Now, (t;j—s+k=3) < (t;—s+k—2) < (t1—s+k-1) < (t1—(t1+k)+k-1) = -1 <0,
since s € [ty + k,t2 + k = 1]. Thus f(t1) = —&(t1 — (s = k¥ +1))® > 0. Since
f(t) = G(t,s) on [s~k+1,t4+3] and G(t,s) is constant, we have that G(t,s) > 0
on [s — k + 1,t4, + 3]. But, as noted earlier, this implies that G(t, s) > 0 for all

t € (t1,t4+ 3] when s € [t) + k,t2 + k - 1].

Case2: Fixs € [ia4+k—-1,i3+k~—1]. Let t € (t1,s — k + 1] and consider
A?G(t,s). As in Case 1, we have that A2G(t,s) =t— (s —k+1) £ 0. This
can be easily seen since the only difference between this expression and the one
in Case 1, is the element y2(¢;,s — k + 1), which lies in the second row, first
column slot. After taking two differences of G(t,s), we will expand along the
second column, which has only one nonzero element, in the second slot. This will

eliminate the y,(t3,s — k + 1) term, and A2G(t, s) will be the same as in Case 1.
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Thus A%G(t,s) <0, since t < s — k + 1. Since G(t;,s) = 0 and AG(ty,s) > 0,

we only have to evaluate G(t,s) at t = s — k + 1. Similar to the last case, we will
now show that G(t,s) >0fort € [s— k+1,t4 + 3].

We now let t € [s — k + 1,t4 + 3]. We know that G(t,s) is a solution to

A%y =0 on (s — k + 4,t4 + 3] and satisfies the appropriate boundary conditions.

So we have that A*G(t,s) = 0 and A3G(44,s) = A%G(t3,s) = 0. This gives us

that AG(t, s) is a constant function. Define the function f(t) on [t;,t4 + 3], to be

v3(t,s—k+1) wn(tt) w(tti) vt th)

ft) = - 0 1 vi(t2,t1) y2(t2, 1)
yl(t3,8—k+1) 0 1 yl(t;;,tl) ’
1 0 0 1

So f(t) = G(t,s) when ¢ > s — k + 1. This then gives us that A f(t) is a constant

function. Evaluating A f at t; and using properties of determinants we have

y2(t2,s —k+1) 1 wyi(ta,t1) w2(t2,t1)
Af(ty) = — 0 1 wni(t2,t1) y2(t2,ta)
yi(ts,s—k+1) 0 1 y1(ts,t1)
1 0 0 1
y2(t'2as—'k+1) 1 yl(t2,tl) y2(t2’tl)
_ 0 1 yi(te.t1) y2(tz.ty)
0 0 1 yl(t;;,tl)
0 0 0 1
0 1 w(ta,t1) ya(t2,th)
_ 0 1 yi(t2,t1)  ya(ta,ta)
yi(ts,s—k+1) 0 1 y1(ts, t1)
1 0 0 1
t —(s—k+1))@
=—yz(t'z,s—k+1)=—(2 (s = 1) .

Now (t; ~ (s —k+1))® = (t3—s+k—-1)(t—s+k—2)and since s > to+ k—1we
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have that (t2—s—k~-2)< (t2—s+k~-1)<(t2—(t2+k—1)+k-1)=0. Thus
Af(t2) < 0 and since A f(t) is constant, we have that Af(t) = AG(t,s) < 0. Thus
G(t,s) is a nonincreasing function for t € [s—k +1,¢4 + 3]. So if G(t4 +4,s) > 0,

then we would have that G(t,s) > 0 for all ¢ in (t;,t4 + 3].

Consider A,G(t4 + 3,3) as a function in s for s € [t + k — 1,t3 + k — 2. We

have

—y2(ta +3.3) vi(ta +3,t1) y2(ta +3,t1) wa(ts +3,t1)

AG(ty +3,5)=— 0 1 y1(t2, 1) y2(t2,t1)
-1 0 1 y1(ts,t1)
0 0 0 1
y2(ta +3,s = k+1) wi(te +3,t1) y2(tsa +3,4)
= 0 1 yi(t2,t1)
1 0 1

=ya(ts + 3,5 — L+ 1)+ {y1(ts + 3, t1)y1(t2,t1) — y2(ts + 3,81)}

(tg +3 —1,)2
2! ’

—(s—k )
= (t4 +3 (‘)' I»+1))(2 +{(t4+3—t1)(t2—t1)—

where § = s — k + 1 in the first determinant. Now s € [t + k — 1,t3 + k — 2] s0
(ta+3—(s=k+1))® = (t4+2~s+k)(ts+1—s+k) >0, since (t4 +1—s+k) >
(ta+1—(t3+k—=2)+k)=(t4 —t3 +3) > 0. So our first term is positive. The

second term is nonnegative since
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{(ta + 3 —t1)(t2 — t,)—%(t., +3-1,)?}
= {(ta+3=t)(ts — 1)) — %(u +3—t)(ta+2— 1))
- %(t,. +3 {2t —t1) = (ta +2— 1))
- -,;—!(n +3—t){(t2 = 1) — (ts — t2) - 2)

20,

since we required that (t; —t;) > (t4 —t2)+1. Thus A,G(¢, s) > 0 for all elements
s € [t2+k —1,t3 + k —2]. This tells us that G(t, s) is an increasing function in s,
andso G(t4+3,t2+k—1) < G(t4+3,s) forall s € [t2+k—1,t3+k—1]. But in our
previous case we proved that G(¢,s) > Ofor allt € (¢;,t4+3],s € (& +k,kt2+k—1].
Thus, 0 < Gty + 3,82 +k—1) S G(ty +3,s) forall s € [t2 + k= 1,t3 + k — 1]

provided that (t; --#;) > (t4 —t2) + 1.

Summing up, we have shown that if (¢, — ;) > ({4 —t2) + 1, then G(¢,s) >0

for all t in (t;,t4 + 3], s fixed in [t2 + k — 1,13 + k - 1].

Our final case is when s is an element of [t3 + k — 1,4 + k — 1).

Case3: Fixse[ts+k—-1,t4 +k-1).




Let t <s — k+ 1 and consider A2G(t,s) which is

00 1 yl(t,tl)
A2G(t,s) = ~ 0 1 w(te,t1) w2tz )
7 oo 1 vi(ts, t1)
1 0 0 1
0 1 y1(t,t1)

1 yl(t,tl)l

=1 wi(tz,t1) y2(t2,t1) =—|1 v1(ts,t1)

0 1 y1(ts, t1)
=yt t1) = nlts,t1) = (t —t1) — (& — t1)

= (t - t3).

This gives that A2G(t,s) < 0 on [t1,13] and A%G(t,s) 2> 0 on [t3,s — k +1]. Since
G(t;,s) = 0 and AG(t;,s) > 0, all we have to worry about is the sign of G(t, s) for
t € [ts,s + k —1]. We know AG(t2,s) = 0 and A2G(t,s) =t —1t3,s0 AG(t,s) <0
on (¢2,t3] and then begins to increase. Now, as it turns out, AG(t.,s) = 0 where
to = t3 + (t3 — t2) + 1. This can be verified by direct substitution, but the algebra
is exhaustive. (For a motivation of why this t, works, see example 4 of Chapter
3.) Hence, for t € (¢2,t,) we have that AG(¢,s) < 0.

Nowt <s-k+1<(tg+k-1)—-k+1=1. Thust <t <ty +2<
t3 + (t3 —t2) + 1 = to, since by hypothesis we have (t4 —t3) + 1 < (t3 —t2). Hence
AG(t,s) < 0on (t2,s — k+ 1] and so we have that G(t, s) is a decreasing function
on (t2,s + k — 1. This gives us that if G(s + ¥ — 1,s) > 0, then G(t,s) > 0
for all t € (t;,s + k — 1]. Like before, we will now show that G(t,s) > 0 for all

te[s+k—1,24+3]
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Let ¢ be in the interval [s + k — 1,24 + 3] and consider A2G(t,s) on [s + k —

1,14 + l],
nit,s—k+1) 0 1 yl(t,tl)
0 1 1y, tg,t
A2G(t,s) = — yi(tz,t1)  y2(ta,t1)
0 0 1 yl(t3atl)
1 0 0 1
nlt,s—k+1) 1 wn(tt)
== 0 1 yi(ts, 1)
1 0 1

= -yl(t,s -k+ 1) - {yl(t3,t1) - yl(t7t1)}
=—(t—(s—k+1)={(ts—t1) = (t —t1)}
=(s—~(t3+k—1)) >0, sinces€[ts+k—1,t4+k—-1}.

This gives us that AG(t,s) is nondecreasing for t € [s + k — 1,t4 + 2]. If we
could show that AG(t4 +2,s) < 0 then G(¢,s) would be a decreasing function on
[s + ¥ — 1,24 + 3]. Then, if G(t4 + 3,s) > 0 we would have that G(t,s) > 0 for

t€[s+k—1,t4 + 3]. So, we consider

yz(t4+2,8—-k+1) 1 yl(t4+2,t1) yz(t4+2,t1)
0 1wyt th) y2(t2,t1)
AG(tg +2,8) = —
(s +2,5) 0 0 1 yi(ts, t1)
1 0 0 1
1 yi(ta+2,t1) yo(ta +2,11)
= ~ya(ts +2,s—k+1)+ |1  y(tz,ty) y2(t2,t1)
0 1 yl(t-'htl)

Examining the first term we have (¢4 +2~s+k)> (t4 +1-s+k) 2> (4 +2 -

(ts + k= 1)+ k) = 3 > 0, which gives us that —ys(t4 + 2,5 ~ k +1) < 0. We now
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consider the determinant term. Let the function h(r), be the determinant term

with ¢, replaced by r. So

1 Yi (t4 + 2’ T) y2(t4 + 27 T)

h(r) =1 vi(tz,r) y2(t2,7) |, which gives
0 1 " (t3’ 7‘)
1 1 yta+2,r) 1 yi(ta+2,7) wi(ta +2,7)
Ash(r)=-]1 1 y2(t2,7) [—|1 y1(t2,7) vi(tz,r)
0 0 wits,r) 0 1 1
=0.

Thus h(r) is a constant. Evaluating h at ¢; gives us

1 wi(ta+2,82) wyo(ta +2,82) 1 yilta +2,t2) ya2(ta +2,12)
h(t2) = |1 y1(t2,t2) y2(ta,t2) | =1 0 _ 0
0 1 1’31 (t;;,tz) 0 1 yl(ta,tz)

= —{y1(ts + 2,t2)y1(t3,t2) ~ y2(ts + 2,t2)}

(s +2~-1)?
- o1

- (t4 +2 - t2)(t3 - tz)

_(tat2- tz??(!t4 +170) 42— 1)t — ta)

= -;—(t.‘ +2- tg){(t,; - ts) +1- (t3 - t2)}

Thus we have that h(¢2) < 0, since by hypothesis (14 —t3) + 1 < (¢3 — t2). Hence,
h(r) < 0 and so our determinant is < 0. This gives us that AG(t4 + 2,s) < 0,
so we have that G(t,s) is decreasing in t on [s + k ~ 1,24 + 3] provided that
(t4 = t3) +1 < (t3 — t2). Hence if G(t4 + 3,s) > 0, then G(t,s) > 0 for all t in

[s+k-1,t4 +3].

We now will evaluate G(t4 +3,s). If we consider G(t4 + 3, s) as a function of




‘ 135

s, and then take the difference with respect to s and let § =s — k + 1, we get

—y2(ts +3,5) wi(ta+3,t1) y2(ta +3,t1) ya(ta +3,%1)

A G(t +3 s) = — 0 1 yl(t21t1) yz(tQ,tl)
T 0 0 1 wts,ta)
0 0 0 1

1
=y2(t4+3,s—k+1)=5(t4+3—(s-k+1))(2>

1
= 5(te +2-s5+k)3 >0,

since (t4 +2—s4+k)> (t4+1—s+k) > (tg+1~(ts+k—1)+k)=2>0. Thus

G(ts + 3,s) is increasing in s for s in [t3 + k — 1,24 + k — 1]. This gives us that

G(ts + 3,83+ k—1) < G(t4 + 3,s) for all s € [t3 + k — 1,t4 + k — 1]. But from

. Case 2) we know that G(t4 + 3,%3) > 0 provided that (tz — t1) > (t4 —t2) + 1.

Hence we have that if (t; —t;) > (¢4 — t2) + 1 and (f3 — t2) > (t4 — t3) + 1 then
G(t,s)>0forallt € (t;,t4+3),s€[ta+k—1,ts +k~1].

Thus, combining all of our cases, we have shown that if we have (t2 -t)>

(ty —t3) + 1 and (tz —t) > (t4 — t3) + 1 then G(¢,s) > 0 for all t € (3,14 + 3,

s € [ty + k,ts +k —1]. Hence we have that under the conditions stated, hypothesis

(H) holds.
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